

Syllabus comparison chart

NSW Mathematics K-10 Syllabus (2012)				NSW Mathematics 3-6 Syllabus (2023)				Activities (courses) Topics	Skill Quests
Strand	Substrands	Outcomes	Code	Strand	Substrands	Outcomes	Code	NSW New Syllabus (2023) S1 Year 2	
Measurement and Geometry	Length 2	measures, records, compares and estimates lengths and distances using uniform informal units, metres and centimetres	MAI-9MG		Geometric measure B: Position	Represents and describes the positions of objects in familiar locations.	MA1-GM-01		Position with maps
	Position 2	represents and describes the positions of objects in everyday situations and on maps	MAI-16MG		Geometric measure B: Length	Measures, records, compares and estimates lengths and distances using uniform informal units, as well as metres and centimetres.	MA1-GM-02	Geometric measure: length (B)	Compare lengths informal units Measure using formal units
						Creates and recognises halves, quarters and eighths as part measures of a whole length.	MA1-GM-03		Halves, quarters \& eighths
	Two-dimensional Space 2	manipulates, sorts, represents, describes and explores two-dimensional shapes, including quadrilaterals, pentagons, hexagons and octagons	MAI-15MG		Two-dimensional spatial structure B: 2D shapes	Recognises, describes and represents including quadrilaterals and other common polygons.	MA1-2DS-01	2D spatial structure: 2D shapes (B)	Turns (rotations)
	Area 2	measures, records, compares and estimates areas using uniform informal units	MAI-10MG		Two-dimensional spatial structure B : Area	Measures and compares areas using uniform informal units in rows and columns.	MA1-2DS-02	2D spatial structure: 2D shapes (B)	Measure area
	Three-dimensional Space 2	sorts, describes, represents and recognises familiar three-dimensional objects, including cones, cubes, cylinders, spheres and prisms	MAI-14MG	Measurement and Space	Three-dimensional spatial structure B: 3D objects	Recognises, describes and represents familiar three-dimensional objects.	MA1-3DS-01	3D spatial structure: properties (B)	3D objects
	Volume and Capacity 2	measures, records, compares and estimates volumes and capacities using uniform informal units	MA1-11MG		Three-dimensional spatial structure B: Volume	Measures, records, compares and estimates interval volumes (capacities) and volumes using uniform informal units.	MA1-3DS-02	3D spatial structure: volume (B)	Measure volume a capacity Compare \& order volume \& capacity
	Mass 2	measures, records, compares and estimates the masses of objects using uniform informal units	MAI-12MG		Non-spatial measure B: Mass	Measures, records, compares and estimates the masses of objects using uniform informal units.	MA1-NSM-01	Non-spatial measure: mass (B)	Compare \& order mass
	Time 2	describes, compares and orders durations of events, and reads half- and quarter-hour time	MAI-13MG		Non-spatial measure B: Time	Describes, compares and orders durations of events, and reads half- and quarter-hour time.	MA1-NSM-02	Non-spatial measure: duration (B)	Time - calendars Time - formal units Tell time - half $\&$ quarter hours

Syllabus comparison chart

Learning sequence	Term one	Term two
LS 1	Number and Algebra	Number and Algebra
	Big idea: Collections of ten are really useful	Big idea: Equal means equivalent
	Numbers to 1000	Additive relations
	- Place value to 1000 - Comparing and ordering 3 -digit numbers	- Number bonds to 20 - Addition and subtraction fact families - Commutative property for addition - Equivalence
LS 2	Number and Algebra Measurement and Space	Statistics and Probability Number and Algebra
	Big idea: Patterns have something that repeats over and over and over again	Big idea: Data helps describe and wonder about the world
	Patterns	Data
	- Counting patterns - Increasing and decreasing patterns - Shape patterns	- Posing questions - Data representations: tables, lists, picture graphs - Interpreting data
LS 3	Measurement and Space Number and Algebra	Measurement and Space Number and Algebra
	Big idea: What needs to be measured determines the unit of measurement	Big idea: What needs to be measured determines the unit of measurement
	Comparing measurements	Time
	- Comparing measurements	- Duration of events - Tell time to the half and quarter hour
LS 4	Number and Algebra	Number and Algebra
	Big idea: Smaller numbers can be found hiding in bigger numbers	Big idea: Collections of objects can be changed by adding more (combining) or taking some away (separating)
	Partitioning \& adding 3-digit numbers	Addition and subtraction
	- Partitioning 3-digit numbers - Rounding to nearest 100	- Addition and subtraction as inverse operations - Using place value to add and subtract
LS 5	Measurement and Space	Measurement and Space
	Big idea: New shapes can be made by joining (combining) or partitioning (breaking apart) existing shapes	Big idea: Sometimes things move and change location
	Building up shapes	Position
	- 2D Shapes Review - Composite 2D shapes - Building up 3D objects	- Interpret simple maps - Following directions

Number and Algebra

Big idea: Collections of ten are really useful

Number review

Review:

- Term 1, Learning Sequence 1
- Term 2, Learning Sequence 1

Number and Algebra

Big idea: Patterns have something that repeats over and over and over again
Multiplicative patterns

- Skip counting patterns

Number and Algebra

Big idea: Making and using equal group

Multiplication and division

- Multiplication turnarounds
- Multiplication models
- Dividing $2,3,4,5$ and 10 's

r and Algebra

Big idea: What needs to be measured determines the unit of measuremen

Area and volume

- Comparing areas (review)
- Comparing and measuring volumes

Number and Algebra

Measurement and Space
Big idea: A fraction (like one half) can mean half of a
collection, half of an object or half of a measure. A whol unit can be partitioned into smaller parts

Fractions

- Doubling and halving
- Model halves, quarters and eighths

Term four

Number and Algebra

Big idea: There are many different situations where addition, subtraction, multiplication and division can be used

Everyday operations and money

Everyday operations: addition, subtraction,
multiplication and division

- Word problems: addition and subtraction

Measurement and Space

Number and Algebra
 unit of measurement

ength and mass

Measuring length using formal units

- Comparing mass

Statistics and Probability
 Number and Algebra

Big idea: Data is collected to solve problem

Chance (and data review)

Review:

- Term 2, Learning Sequence 2

Measurement and Spac

Big idea: Objects can be sorted and classified in differen ways

3D objects

- Name and sort 3D objects
- Identify faces, edges and vertices

Number and Algebra

Big idea: Problems can be solved and represented in different ways

Problem solving

- Word problems with multiplication and division

Describe duration of time

Outcomes	Focus	Content	Located
MA1-RWN-01 applies an understanding of place value and the role of zero to read, write and order two-and three-digit numbers	Representing whole numbers B	Use counting sequences of ones and tens flexibly	Term 1 All LS Term 2 All LS Term 3 All LS Term 4 All LS
MA1-RWN-02 reasons about representations of whole numbers to 1000 , partitioning numbers to use and record quantity values		Form, regroup, and rename three-digit numbers	Term 1 All LS Term 2 All LS Term 3 All LS Term 4 All LS
MA1-CSQ-01 uses number bonds and the relationship between addition and subtraction to solve problems involving partitioning	Combining and separating quantities B	Represent and reason about additive relations	Term 1 LS 1, 2 Term 2 LS 1, 4 Term 3 LS 1 Term 4 LS 1
		Form multiples of ten when adding and subtracting two-digit numbers	Term 2 LS 4 Term 3 LS 1 Term 4 LS 1
		Use knowledge of equality to solve related problems	Term 1 LS 1, 2 Term 2 LS 4 Term 3 LS 1 Term 4 LS 1
MA1-FG-01 uses the structure of equal groups to solve multiplication problems, and shares or groups to solve division problems	Forming groups B	Represent and explain multiplication as the combining of equal groups	Term 1 LS 2 Term 2 LS 4 Term 3 LS 2, 3, 4 Term 4 LS 1
		Model doubling and halving with fractions	Term 2 LS 3 Term 3 LS 5 Term 4 LS 1
		Represent multiplication and division problems	Term 2 LS 4 Term 3 LS 3 Term 4 LS 1, 5
MA1-GM-01 represents and describes the positions of objects in familiar locations	Geometric measure B	Position: Explore simple maps of familiar locations	Term 2 LS 5
MA1-GM-02 measures, records, compares and estimates lengths and distances using uniform informal units, as well as metres and centimetres		Length: Compare and order lengths, using appropriate uniform informal units	Term 1 LS 3 Term 4 LS 2
		Length: Recognise and use formal units to measure the lengths of objects	Term 4 LS 2
MA1-GM-03 creates and recognises halves, quarters and eighths as part measures of a whole length		Length: Subdivide lengths to find halves and quarters	Term 3 LS 5
		Length: Repeatedly halve lengths to form eighths	Term 3 LS 5

Outcomes	Focus	Content	Located
MA1-2DS-01 recognises, describes and represents shapes including quadrilaterals and other common polygons	Two-dimensional spatial structure B	2D shapes: Represent, combine and separate two-dimensional shapes	Term 1 LS 2
		2D shapes: Identify and describe the orientation of shapes using quarter turns	Term 2 LS 5
MA1-2DS-02 measures and compares areas using uniform informal units in rows and columns		Area: Compare rectangular areas using uniform square units of an appropriate size in rows and columns	$\begin{aligned} & \text { Term } 1 \text { LS } 3 \\ & \text { Term } 3 \text { LS } 4 \end{aligned}$
MA1-3DS-01 recognises, describes and represents familiar three-dimensional objects	Three-dimensional spatial structure B	3D objects: Describe the features of three-dimensional objects	$\begin{aligned} & \text { Term } 1 \text { LS } 5 \\ & \text { Term } 4 \text { LS } 4 \end{aligned}$
MA1-3DS-02 measures, records, compares and estimates internal volumes (capacities) and volumes using uniform informal units		Volume: Compare containers based on internal volume (capacity) by filling and packing	Term 1 LS 3 Term 3 LS 4 Term 4 LS 4
		Volume: Compare volumes using uniform informal units	Term 3 LS 4 Term 4 LS 4
MA1-NSM-01 measures, records, compares and estimates the masses of objects using uniform informal units	Non-spatial measure B	Mass: Compare the masses of objects using an equal-arm balance	Term 4 LS 2
MA1-NSM-02 describes, compares and orders durations of events, and reads half- and quarter-hour time		Time: Describe duration using units of time	Term 2 LS 3 Term 4 LS 5
		Time: Tell time to the quarter-hour using the language of 'past' and 'to'	Term 2 LS 3
MA1-DATA-01 gathers and organises data, displays data in lists, tables and picture graphs	Data B	Identify a question of interest and gather relevant data	$\begin{aligned} & \text { Term } 2 \text { LS } 2 \\ & \text { Term } 4 \text { LS } 3 \end{aligned}$
MA1-DATA-02 reasons about representations of data to describe and interpret the results		Create displays of data and interpret them	$\begin{aligned} & \text { Term } 2 \text { LS } 2 \\ & \text { Term } 4 \text { LS } 3 \end{aligned}$
MA1-CHAN-01 recognises and describes the element of chance in everyday events	Chance B	Identify and describe activities that involve chance	Term 4 LS 3

LS \& Topic	Outcomes	Focus	Content	Activities (courses)	Skill Quests	Challenges	Ebooks
LS 1 Big idea Collections of ten are really useful Topic Numbers to 1000	MA1-RWN-01 applies an understanding of place value and the role of zero to read, write and order two-and three-digit numbers MA1-RWN-02 reasons about representations of whole numbers to 1000 , partitioning numbers to use and record quantity values MA1-CSQ-01 uses number bonds and the relationship between addition and subtraction to solve problems involving partitioning	Representing whole numbers B Combining and separating quantities B	- Use counting sequences of ones and tens flexibly - Form, regroup, and rename three-digit numbers - Represent and reason about additive relations - Use knowledge of equality to solve related problems	Representing whole numbers (B) - Nearest 10 ? - Smallest and largest numbers - 1 More, 10 Less	Read $\&$ write 3-digit numbers - Reading \& representing 3-digit numbers Place value of 3-digit numbers - Identifying digit values in 3-digit numbers Compare \& order numbers to 1000 - Comparing \& ordering numbers to 1000 Whole numbers to 1000 counting in ones - Counting in ones to 1000 - Identifying numbers before \& after up to 1000 Count in tens to 1000 - Counting in tens with 2- \& 3-digit numbers - Finding numbers 10 before \& 10 after up to 1000 Round to the nearest 100 - Rounding numbers up to 1000 to the nearest 100	 Algebra, Whole Number 2-4 - Swap the numbers DOK 2	(3 3-C) Numbers - 2 digit revision pp 1-3 - Numbers to 999 pp 4-18 - Skip counting by 10 s off decade p 43
LS 2 Big idea Patterns have something that repeats over and over and over again Topic Patterns	MA1-2DS-01 recognises, describes and represents shapes including quadrilaterals and other common polygons MA1-RWN-01 applies an understanding of place value and the role of zero to read, write and order two-and three-digit numbers MA1-RWN-02 reasons about representations of whole numbers to 1000 , partitioning numbers to use and record quantity values MA1-CSQ-01 uses number bonds and the relationship between addition and subtraction to solve problems involving partitioning MA1-FG-01 uses the structure of equal groups to solve multiplication problems, and shares or groups to solve division problems	Two-dimensional spatial structure B Representing whole numbers B Combining and separating quantities B Forming groups B	- 2D shapes: Represent, combine and separate two-dimensional shapes - Use counting sequences of ones and tens flexibly - Form, regroup, and rename three-digit numbers - Represent and reason about additive relations - Use knowledge of equality to solve related problems - Represent and reason about additive relations - Use knowledge of equality to solve related problems - Represent and explain multiplication as the combining of equal groups	2D spatial structure: 2D shapes (B) - Simple Patterns - Complete the Pattern			(12-B) Patterns and Relationships - Patterns pp 1-16 ($13-\mathrm{C}$ Patterns and Relationships - Patterns pp 1-8, 12-13

LS \& Topic	Outcomes	Focus	Content	Activities (courses)	Skill Quests	Challenges	Ebooks
LS 3 Big idea What needs to be measured determines the unit of measurement Topic Comparing measurements	MA1-GM-02 measures, records, compares and estimates lengths and distances using uniform informal units, as well as metres and centimetres MA1-2DS-02 measures and compares areas using uniform informal units in rows and columns MA1-3DS-02 measures, records, compares and estimates internal volumes (capacities) and volumes using uniform informal units MA1-RWN-01 applies an understanding of place value and the role of zero to read, write and order two-and three-digit numbers MA1-RWN-02 reasons about representations of whole numbers to 1000 , partitioning numbers to use and record quantity values	Geometric measure B Two-dimensional spatial structure B Three-dimensional spatial structure B Representing whole numbers B	- Length: Compare and order lengths, using appropriate uniform informal units - Area: Compare rectangular areas using uniform square units of an appropriate size in rows and columns - Volume: Compare containers based on internal volume (capacity) by filling and packing - Use counting sequences of ones and tens flexibly - Form, regroup, and rename three-digit numbers	Geometric measure: length (B) - Comparing Length - Measuring Length with Blocks - Measuring Length - How Long is That? - Ordering Lengths (cm) 3D spatial structure: volume (B) - How Full? - Which Holds More? - Filling Fast!	Compare lengths - informal units - Comparing \& ordering lengths using informal units Compare $\mathbb{\&}$ order volume $\mathbb{\&}$ capacity - Compare \& order volume/capacity (informal units)		(Y2-B) Measurement - Length pp 1-14 - Capacity pp 26-33 (Y3-C) Measurement - Length pp 1-4
LS 4 Big idea Smaller numbers can be found hiding in bigger numbers Topic Partitioning 3-digit numbers	MA1-RWN-01 applies an understanding of place value and the role of zero to read, write and order two-and three-digit numbers MA1-RWN-02 reasons about representations of whole numbers to 1000, partitioning numbers to use and record quantity values	Representing whole numbers B	- Use counting sequences of ones and tens flexibly - Form, regroup, and rename three-digit numbers	Representing whole numbers (B) - Count by Tens - Nearest 10 ? - Nearest 100? - Place Value 2 - Partition and Rename 1 - Place Value Partitioning - Smallest and Largest numbers	Count in 100s, 10 s , is - Counting in hundreds, tens \& ones Partition 3-digit numbers - Partitioning 3-digit numbers - Partitioning 3-digit numbers (non-standard)		(Y3-C) Numbers - Place value to 999 pp 19-32
LS 5 Big idea New shapes can be made by joining (combining) or partitioning (breaking apart) existing shapes Topic Building up shapes	MA1-3DS-01 recognises, describes and represents familiar three-dimensional objects MA1-RWN-01 applies an understanding of place value and the role of zero to read, write and order two-and three-digit numbers MA1-RWN-02 reasons about representations of whole numbers to 1000 , partitioning numbers to use and record quantity values	Three-dimensional spatial structure B Representing whole numbers B	- 3D objects: Describe the features of three-dimensional objects - Use counting sequences of ones and tens flexibly - Form, regroup, and rename three-digit numbers	3D spatial structure: properties (B) - Faces, Edges, and Vertices 1 - How many Edges? - How many Vertices?	3D objects - Comparing 2D shapes \& 3D objects		Y2-B Space and Shape - 2D shapes REVIEW pp 1-12 - Composite shapes pp 13-14 -3D shapes pp 19-30 (73-C) Space and Shape - pp 18-24

LS \& Topic	Outcomes	Focus	Content	Activities (courses)	Skill Quests	Challenges	Ebooks
LS 1 Big idea Equal means equivalent Topic Additive relations	MA1-CSQ-01 uses number bonds and the relationship between addition and subtraction to solve problems involving partitioning MA1-RWN-01 applies an understanding of place value and the role of zero ... MA1-RWN-02 reasons about representations of whole numbers to 1000 ...	Combining and separating quantities B Representing whole numbers B	- Represent and reason about additive relations - Use counting sequences of ones and tens flexibly - Form, regroup, and rename three-digit numbers	Combine and separate quantities (B) - All about Twenty - Related Facts 1 - Balance Numbers to 20 - Adding In Any Order - Fact Families: Add and Subtract	Additive relations - Model \& record combinations that make 11-20 - Finding fact families for addition \& subtraction - Commutative property for addition Use equality to solve problems - Determining a missing number - Recognising equality to 18	 Algebra, Addition \& Subtraction 2-4 - The key to adding DOK 2	(Y2-B) Patterns and Relationships - Equivalence pp 17-21 - Addition combinations pp 22-30 (Y3-C) Operations with Numbers - Revising basic addition number facts pp 1-4 - Subtraction facts to 10 revision pp 26-27 - Relating addition and subtraction pp 32-35
LS 2 Big idea Data helps describe and wonder about the world Topic Data	MA1-DATA-01 gathers and organises data, displays data in lists, tables and picture graphs MA1-DATA-02 reasons about representations of data to describe and interpret the results MA1-RWN-01 applies an understanding of place value and the role of zero ... MA1-RWN-02 reasons about representations of whole numbers to 1000 ... MA1-CSQ-01 uses number bonds and the relationship between addition and subtraction to solve ...	Data B Representing whole numbers B	- Identify a question of interest and gather relevant data - Create displays of data and interpret them - Use counting sequences of ones and tens flexibly - Form, regroup, and rename three-digit numbers	Data: collect \& interpret data (B) - Tallies - Read Graphs - Picture Graphs: Who has the Goods? - Making Picture Graphs: With Scale - Picture Graphs: More or Less - Picture Graphs: Single-Unit Scale	Use tables \& lists - Representing \& reading data in tables or lists Create \& interpret data displays - Reading \& interpreting simple picture graph - Using a tally chart, table or picture graph	Statistics \& data 2-4 - Pampered pets (DOK 2	Y2-B Chance and Data - Data pp 7-11 - Collecting \& representing data pp 12-17 (Y3-C) Chance and Data - Tallies p 6 - Collecting \& representing Data pp 9-14
LS 3 Big idea What needs to be measured determines the unit of measurement Topic Time	MA1-NSM-02 describes, compares and orders durations of events, and reads half- and quarter-hour time MA1-RWN-01 applies an understanding of place value and the role of zero ... MA1-RWN-02 reasons about representations of whole numbers to 1000 ... MA1-FG-01 uses the structure of equal groups to solve multiplication problems, and shares or groups to solve division problems	Non-spatial measure B Representing whole numbers B Forming groups B	- Time: Describe duration using units of time - Time: Tell time to the quarter-hour using the language of 'past' and 'to' - Model doubling and halving with fractions - Use counting sequences of ones and tens flexibly - Form, regroup, and rename three-digit numbers	Non-spatial measure: duration (B) - Months of the Year - Months After and Before - Using a Calendar - Seasons (AU/NZ) - Hour Times - Half Hour Times - Tell Time to the Hour (UK) - Tell Time to the Half Hour (UK) - Quarter To and Quarter Past	Time - calendars - Using calendars to solve simple problems Time - formal units - Choosing appropriate units of time - Using hours to measure time - Using minutes to measure time - Using seconds to measure time - Comparing hours, minutes \& seconds Tell time - half \& quarter hours - Telling time to the half \& quarter hour Tell time - review hour \& half hour - Telling time to the hour \& half hour (analogue) - Telling time to the hour \& half hour (digital)		Time and Money - Time pp 1-10 - Analogue clocks pp 11-18 (Y3-C) Time and Money - Time pp 1-10 - O'clock p 14 - Half past pp 15-19 - Quarter past pp 20-21 - Quarter to pp 22-23

LS \& Topic	Outcomes	Focus	Content	Activities (courses)	Skill Quests	Challenges	Ebooks
LS 4 Big idea Collections of objects can be changed by adding more (combining) or taking some away (separating) Topic Addition and subtraction	MA1-CSQ-01 uses number bonds and the relationship between addition and subtraction to solve problems involving partitioning MA1-FG-01 uses the structure of equal groups to solve multiplication problems, and shares or groups to solve division problems MA1-RWN-01 applies an understanding of place value and the role of zero to read, write and order two-and three-digit numbers MA1-RWN-02 reasons about representations of whole numbers to 1000 , partitioning numbers to use and record quantity values	Combining and separating quantities B Forming groups B Representing whole numbers B	- Form multiples of ten when adding and subtracting two-digit numbers - Use knowledge of equality to solve related problems - Represent and explain multiplication as the combining of equal groups - Represent multiplication and division problems - Use counting sequences of ones and tens flexibly - Form, regroup, and rename three-digit numbers - Represent and reason about additive relations	Combine and separate quantities (B) - Addictive Addition - Subtraction Facts to 18 - Subtract Tens - 10 More, 10 Less - Doubles and Halves to 20 - More, Less or the Same to 20	Add \& subtract 2-digit numbers - Using the bar model within 20 - Adding 2-digit \& 1-digit numbers - Using mental strategies to add \& subtract (to 100) - Adding \& subtracting tens from a 2-digit number - Introducing place value to add \& subtract (to 200) - Using place value to add \& subtract (to 200) - Using place value (no models) to add \& subtract - Using place value to add (crossing a 10) - Subtracting using addition	 Algebra, Addition \& Subtraction, 2-4 - Make 200 DOK 3 - Calculate through this maze (3 digit numbers) ©OK 3	(13-C) Operations with Numbers - Counting on pp 5-8 - Using numbers lines p9 - Doubling \& near doubles pp 10-16 - Bridging to 10 pp 17-18 - Counting on and counting back pp 28-31 - Difference pp 36-40 - Subtracting 2 -digit numbers p 41 - Jump strategy pp 42-43, 48
LS 5 Big idea Sometimes things move and change location Topic Position	MA1-GM-01 represents and describes the positions of objects in familiar locations MA1-2DS-01 recognises, describes and represents shapes including quadrilaterals and other common polygons MA1-RWN-01 applies an understanding of place value and the role of zero to read, write and order two-and three-digit numbers MA1-RWN-02 reasons about representations of whole numbers to 1000 , partitioning numbers to use and record quantity values	Geometric measure B Two-dimensional spatial structure B Representing whole numbers B	- Position: Explore simple maps of familiar locations - 2 D shapes: Identify and describe the orientation of shapes using quarter turns - Use counting sequences of ones and tens flexibly - Form, regroup, and rename three-digit numbers	2D spatial structure: 2D shapes (B) - Collect Simple Shapes - Count Sides and Corners - Collect the Shapes 2 - Symmetry	Position with maps - Reading simple maps - Following a path Two-dimensional shapes - Sorting quadrilaterals from other 2D shapes - Identifying \& naming simple 2D shapes - Comparing, describing \& sorting simple 2 D shapes - Representing \& describing regular polygons Slides, flips \& turns - Slides, flips \& turns Symmetry - Recognising line symmetry		(Y2-B) Space and Shape - Position pp 31-38 (Y3-C) Space and Shape - Describing position pp 30-37

LS \& Topic	Outcomes	Focus	Content	Activities (courses)	Skill Quests	Challenges	Ebooks
LS 1 Big idea Collections of ten are really useful Topic Number review	MA1-RWN-01 applies an understanding of place value and the role of zero to read, write and order two-and three-digit numbers MA1-RWN-02 reasons about representations of whole numbers to 1000 , partitioning numbers to use and record quantity values MA1-CSQ-01 uses number bonds and the relationship between addition and subtraction to solve problems involving partitioning	Representing whole numbers B Combining and separating quantities B	- Use counting sequences of ones and tens flexibly - Form, regroup, and rename three-digit numbers - Represent and reason about additive relations - Form multiples of ten when adding and subtracting two-digit numbers - Use knowledge of equality to solve related problems	Review earlier content	Review earlier content	Review earlier content	Review earlier content
LS 2 Big idea Patterns have something that repeats over and over and over again Topic Multiplicative patterns	MA1-FG-01 uses the structure of equal groups to solve multiplication problems, and shares or groups to solve division problems MA1-RWN-01 applies an understanding of place value and the role of zero to read, write and order two-and three-digit numbers MA1-RWN-02 reasons about representations of whole numbers to 1000, partitioning numbers to use and record quantity values	Forming groups B Representing whole numbers B	- Represent and explain multiplication as the combining of equal groups - Use counting sequences of ones and tens flexibly - Form, regroup, and rename three-digit numbers	Review earlier content	Review earlier content	Number $\&$ Algebra, Division 2-4 - Trading card count ©OK 3 - How many stickers? (0OK 3)	Y2-B Patterns and Relationships - Patterns and rules - growing patterns pp 12-16
LS 3 Big idea Making and using equal groups Topic Multiplication and divison	MA1-FG-01 uses the structure of equal groups to solve multiplication problems, and shares or groups to solve division problems MA1-RWN-01 applies an understanding of place value and the role of zero to read, write and order two-and three-digit numbers MA1-RWN-02 reasons about representations of whole numbers to 1000, partitioning numbers to use and record quantity values	Forming groups B Representing whole numbers B	- Represent and explain multiplication as the combining of equal groups - Represent multiplication and division problems - Use counting sequences of ones and tens flexibly - Form, regroup, and rename three-digit numbers	Forming groups (B) - Multiplication Turnarounds - Dividing Twos - Dividing Fives - Dividing Tens - Dividing Threes - Dividing Fours - Model multiplication to 5×5 - Multiplication Arrays - Arrays 1	Multiplication as equal groups - Adding to multiply - Using the commutative property of multiplication Multiply \& divide using equal groups - Dividing by sharing \& grouping - Using repeated subtraction to divide - Solving simple multiplication problems (2,5,10x) Explore leftovers - Fair shares with/without remainders		(Y3-C) Four Times as Big (Y3-C) Operations with Numbers - Equal groups pp 49-61 - Sharing pp 67-74 - Relating multiplication and division pp 75-78

LS \& Topic	Outcomes	Focus	Content	Activities (courses)	Skill Quests	Challenges	Ebooks
LS 4 Big idea What needs to be measured determines the unit of measurement Topic Area and volume	MA1-2DS-02 measures and compares areas using uniform informal units in rows and columns MA1-3DS-02 measures, records, compares and estimates internal volumes (capacities) and volumes using uniform informal units MA1-FG-01 uses the structure of equal groups to solve multiplication problems, and shares or groups to solve division problems MA1-RWN-01 applies an understanding of place value and the role of zero to read, write and order two-and three-digit numbers MA1-RWN-02 reasons about representations of whole numbers to 1000 , partitioning numbers to use and record quantity values	Two-dimensional spatial structure B Three-dimensional spatial structure B Forming groups B Representing whole numbers B	- Area: Compare rectangular areas using uniform square units of an appropriate size in rows and columns - Volume: Compare containers based on internal volume (capacity) by filling and packing - Volume: Compare volumes using uniform informal units - Represent and explain multiplication as the combining of equal groups - Use counting sequences of ones and tens flexibly - Form, regroup, and rename three-digit numbers	2D spatial structure: 2D shapes (B) - Equal areas 3D spatial structure: volume (B) - How many Blocks? - Comparing Volume	Measure area - Measuring \& estimating area using square units Measure volume $\&$ capacity - Measuring volume \& capacity (informal units) Compare $\&$ order volume $\&$ capacity - Comparing \& ordering volume using blocks - Comparing \& ordering volume using displacement	Measurement, Area 2-4 - Rectangles of equal area (DOK 3	
LS 5 Big idea A fraction (like one half) can mean half of a collection, half of an object or half of a measure. A whole unit can be partitioned into smaller parts Topic Fractions	MA1-GM-03 creates and recognises halves, quarters and eighths as part measures of a whole length MA1-FG-01 uses the structure of equal groups to solve multiplication problems, and shares or groups to solve division problems MA1-RWN-01 applies an understanding of place value and the role of zero to read, write and order two-and three-digit numbers MA1-RWN-02 reasons about representations of whole numbers to 1000 , partitioning numbers to use and record quantity values	Geometric measure B Forming groups B Representing whole numbers B	- Length: Repeatedly halve lengths to form eighths - Length: Subdivide lengths to find halves and quarters - Model doubling and halving with fractions - Use counting sequences of ones and tens flexibly - Form, regroup, and rename three-digit numbers		Halves, quarters \& eighths - Exploring the meaning of fraction symbols - Finding quarters of sets or shapes (no symbols) - Finding quarters of sets or shapes (symbols) - Finding halves \& quarters (no symbols) - Finding halves \& quarters (symbols) - Finding eighths of objects or shapes - Finding halves, quarters \& eighths of shapes Eighths \& repeated halving - Relating eighths to repeated halving	Number $\&$ Algebra, Fractions 2-4 - Monstrous proportions DOK 2)	(13-C) Operations with Numbers - Relating division and fractions p 79

LS \& Topic	Outcomes	Focus	Content	Activities (courses)	Skill Quests	Challenges	Ebooks
LS 1 Big idea There are many different situations where addition, subtraction, multiplication and division can be used Topic Everyday operations \& money	MA1-CSQ-01 uses number bonds and the relationship between addition and subtraction to solve problems involving partitioning MA1-FG-01 uses the structure of equal groups to solve multiplication problems, and shares or groups to solve division problems MA1-RWN-01 applies an understanding of place value and the role of zero ... MA1-RWN-02 reasons about representations of whole numbers to 1000 ...	Combining and separating quantities B Forming groups B Representing whole numbers B	- Represent and reason about additive relations - Form multiples of ten when adding and subtracting two-digit numbers - Use knowledge of equality to solve related problems - Represent and explain multiplication as the combining of equal groups - Model doubling and halving with fractions - Represent multiplication and division problems - Use counting sequences of ones and tens flexibly - Form, regroup, and rename three-digit numbers	Combine and separate quantities (B) - Add and Subtract Problems	Whole number - money - Counting \& ordering Australian notes \& coins Add \& subtract 2-digit numbers - Solving word problems with start or change unknown		(Y2-B) Time and Money - Money pp 20-35
LS 2 Big idea What needs to be measured determines the unit of measurement Topic Length and mass	MA1-GM-02 measures, records, compares and estimates lengths and distances using uniform informal units ... MA1-NSM-01 measures, records, compares and estimates the masses of objects using uniform informal units MA1-RWN-01 applies an understanding of place value and the role of zero ... MA1-RWN-02 reasons about representations of whole numbers to 1000 ...	Geometric measure B Non-spatial measure B Representing whole numbers B	- Length: Compare and order lengths, using appropriate uniform informal units - Length: Recognise and use formal units to measure the lengths of objects - Mass: Compare the masses of objects using an equal-arm balance - Use counting sequences of ones and tens flexibly - Form, regroup, and rename three-digit numbers	Geometric measure: length (B) - Measuring Length - Comparing Length - Measuring Length with Blocks - How Long is That? - Ordering Lengths (cm) Non-spatial measure: mass (B) - Balancing Act - Everyday Mass	Measure using formal units - Introducing formal units for length (m) - Measuring using formal units for length (cm) Compare $\mathcal{\&}$ order mass - Comparing \& ordering mass using informal units		(Y2-B) Measurement - Mass pp 15-25
LS 3 Big idea Data is collected to solve problems Topic Chance (and data review)	MA1-CHAN-01 recognises and describes the element of chance in everyday events MA1-DATA-01 gathers and organises data, displays data in lists, tables and picture graphs MA1-DATA-02 reasons about representations of data to describe and interpret the results MA1-RWN-01 applies an understanding of place value and the role of zero ... MA1-RWN-02 reasons about representations of whole numbers to 1000 ...	Chance B Data B Representing whole numbers B	- Identify and describe activities that involve chance - Identify a question of interest and gather relevant data - Create displays of data and interpret them - Use counting sequences of ones and tens flexibly - Form, regroup, and rename three-digit numbers	Chance (B) - Will it Happen? - Most Likely and Least Likely	Chance - basic language - Using basic probability language	 Probability 2-4 - Selective sleepover DOK3 - Matt's day ${ }^{00 \mathrm{~K} 3}$ - Everyday events (DOK3)	Y2-B Chance and Data - Analysing data pp 18-21 - Chance pp 1-6 (Y3-C) Chance and Data - Chance pp 1-3

NSW New Syllabus (2023) S1 Year 2							
LS \& Topic	Outcomes	Focus	Content	Activities (courses)	Skill Quests	Challenges	Ebooks
LS 4 Big idea Objects can be sorted and classified in different ways Topic 3D objects	MA1-3DS-01 recognises, describes and represents familiar three-dimensional objects MA1-3DS-02 measures, records, compares and estimates internal volumes (capacities) and volumes using uniform informal units MA1-RWN-01 applies an understanding of place value and the role of zero to read, write and order two-and three-digit numbers MA1-RWN-02 reasons about representations of whole numbers to 1000, partitioning numbers to use and record quantity values	Three-dimensional spatial structure B Representing whole numbers B	- 3D objects: Describe the features of three-dimensional objects - Volume: Compare containers based on internal volume (capacity) by filling and packing - Volume: Compare volumes using uniform informal units - Form, regroup, and rename three-digit numbers - Use counting sequences of ones and tens flexibly	3D spatial structure: properties (B) - Faces, Edges, and Vertices 1 - How many Edges? - How many Vertices?	3D objects - Identifying faces, edges \& vertices on 3D objects - Describing \& sorting 3D objects	Geometry, 3D Shapes 2-4 - Shape sums DOK 3	
LS 5 Big idea Problems can be solved and represented in different ways Topic Problem solving	MA1-RWN-01 applies an understanding of place value and the role of zero to read, write and order two-and three-digit numbers MA1-RWN-02 reasons about representations of whole numbers to 1000 , partitioning numbers to use and record quantity values MA1-FG-01 uses the structure of equal groups to solve multiplication problems, and shares or groups to solve division problems MA1-NSM-02 describes, compares and orders durations of events, and reads half- and quarter-hour time	Representing whole numbers B Forming groups B Non-spatial measure B	- Use counting sequences of ones and tens flexibly - Form, regroup, and rename three-digit numbers - Represent multiplication and division problems - Time: Describe duration using units of time	Teacher directed	Teacher directed		(13-C) Operations with Numbers - Multiplication pp 65-66

