Syllabus comparison chart

NSW Mathematics K-10 Syllabus (2012)				NSW Mathematics 3-6 Syllabus (2023)				Activities (courses): Topics	Skill Quests
Strand	Substrands	Outcomes	Code	Strand	Substrands	Outcomes	Code	NSW New Syllabus	(2023) S2 Year 3
Number and Algebra	Whole Numbers 1	applies place value to order, read and represent numbers of up to five digits	MA2-4NA	Number and Algebra	Representing numbers using place value A	Applies an understanding of place value and the role of zero to represent numbers to at least tens of thousands.	MA2-RN-01	Represent numbers using place value (A)	Represent 4-digit numbers
	Addition and Subtraction 1	uses mental and written strategies for addition and subtraction involving two-, three-, four- and five-digit numbers	MA2-5NA		Additive relations A	Selects and uses mental and written strategies for addition and subtraction involving 1 - and 3 -digit numbers.	MA2-AR-01	Additive relations: up to 3 digits (A)	Mental strategies to add or subtract Select strategies to add or subtract Addition \& subtraction to 3 digits
	Multiplication and Division 1	uses mental and informal written strategies for multiplication and division	MA2-6NA		Multiplicative relations A	Represents and uses the structure of multiplicative relations to 10×10 to solve problems. Completes number sentences involving multiplication and division by finding missing values.	MA2-MR-01	Multiplicative relations (A)	Number patterns Multiplicative facts for $2,4,5$ \& 10
	Patterns and Algebra 1	generalises properties of odd and even numbers, generates number patterns, and completes simple number sentences by calculating missing values	MA2-8NA						
	Fractions and Decimals 1	represents, models and compares commonly used fractions and decimals	MA2-7NA		Partitioned fractions A and B	Represents and compares halves, quarters, thirds and fifths as lengths on a number line and their related fractions formed by halving (eighths, sixths and tenths).	MA2-PF-01	Partitioned fractions (A)	Halves, quarters, thirds \& fifths

Syllabus comparison chart

NSW Mathematics K-10 Syllabus (2012)				NSW Mathematics 3-6 Syllabus (2023)				Activities (courses): Topics	Skill Quests
Strand	Substrands	Outcomes	Code	Strand	Substrands	Outcomes	Code	NSW New Syllabus (2023) S2 Year 3	
Statistics and Probability	Data 1	selects appropriate methods to collect data, and constructs, compares, interprets and evaluates data displays, including tables, picture graphs and column graphs	MA2-18SP	Statistics and Probability	Data A	Collects discrete data and constructs graphs using a given scale.	MA2-DATA-01	Data (A)	Collect $\&$ organise discrete data
						- Interprets data in tables, dot plots and column graphs	MA2-DATA-02		Read tables, dot plots a column graphs
	Chance 1	describes and compares chance events in social experimental contexts	MA2-19SP		Chance A	Records and compares the results of chance experiments.	MA2-CHAN-01	Chance (A)	Chance concepts

Learning sequence	Term one	Term two
LS 1	Number and Algebra	Number and Algebra
	Big idea: The number system extends infinitely to very large and very small numbers	Big idea: The number system extends infinitely to very large and very small numbers
	Numbers to 10000	Numbers to 100000
	- Apply place value to thousands - Read, represent and order numbers to 10000 - Partition numbers	- Apply place value to tens-of-thousands - Read, represent and order numbers to 10000 - Partition numbers
LS 2	Number and Algebra	Number and Algebra
	Big idea: Addition and subtraction problems can be solved by using a variety of strategies	Big idea: Multiplicative thinking involves flexible use of multiplication and division concepts, strategies and representations
	Addition and subtraction: mental strategies	Multiplication facts for 2, 4, 5 and 10
	- Apply associative property of addition - Solve inverse operations - Use flexible strategies to add and subtract: bridging, compensation, levelling and constant difference	- Model, describe and record patterns of multiples - Identify fact families - Use commutative property of multiplication
LS 3	Measurement and Space	Measurement and Space
	Big idea: What needs to be measured determines the unit of measurement	Big idea: Visual representations help to understand aspects of the world
	Time	Position
	- Calculate duration of events - Identify half- and quarter-hour time - Read time as past and towards the hour - Read analog clocks to the minute	- Describe and follow routes using landmarks and directional language - Locate positions on grid maps
LS 4	Number and Algebra	Measurement and Space \| Number and Algebra
	Big idea: Fractions represent multiple ideas and can be represented in different ways	Big idea: What needs to be measured determines the unit of measurement
	Simple fractions	3D objects and capacity
	- Model fractions - Identify fraction families - Make thirds and fifths of a length	- Identify prisms, pyramids and cylinders - Construct 3D models - Create nets - Measure and record capacity using L - Estimate the capacity of containers
LS 5	Statistics and Probability \| Number and Algebra	Measurement and Space \| Number and Algebra
	Big idea: Questions can be asked and answered by collecting and interpreting data	Big idea: Angles are the primary structural component of many shapes
	Data	Angles
	- Collect discrete data - Organise and display data	- Interpret simple maps - Following directions

Term three Term four

Number and Algebra

Big idea: The number system extends infinitely to very large and very small numbers

Patterns

- Model, describe and record patterns of multiples
- Identify and continue increasing and decreasing patterns
- Explain properties of odd and even numbers
- Multiply by one and zero

Measurement and Space

Big idea: Understanding relationships between the properties of 2 D shapes helps visualise and organise spaces in the world

2D shape properties

- Describe and compare 2D shapes
- Identify parallel sides
- Explain properties of quadrilaterals
- Identify right angles in shapes

Measurement and Space | Number and Algebra

Big idea: Multiplicative thinking involves flexible use of
multiplication and division concepts, strategies and representations
Linking multiplication to area and volume

- Area: Use square centimetres and metres to
measure and estimate area of rectangles
- Measure capacity and volme

Measurement and Space | Number and Algebra

Big idea: What needs to be measured determines the unit of measurement

Length and mass

- Measure length using mm, cm and m
- Estimate lengths and distances
- Compare and order lengths and distances
- Record and compare mass using kg

Number and Algebra

Big idea: Addition and subtraction problems can be solved by using a variety of strategies

Addition and subtraction problems

- Doubling and halving
- Model halves, quarters and eighths

Number and Algebra

Big idea: The number system extends infinitely to very large and very small numbers

Number review

Review:

- Term 1, Learning Sequence 1

Term 2, Learning Sequence

- Term 3, Learning Sequence 1

Number and Algebra

Big idea: Fractions represent multiple ideas and can be represented in different ways

Fractions review

- Recreate the whole unit from a fractional part

Statistics and Probability

Big idea: Data is collected to solve problems

Chance (and data review)

- Use the language of chance
- Record possible outcomes and combinations
- Conduct chance experiments

Collect and display data

Number and Algebra

Big idea: Multiplicative thinking involves flexible use of
multiplication and division concepts, strategies and representations
Multiplication and division problems

- Use flexible strategies to solve word problems involving multiplication and division

Measurement and Space

Big idea: Shapes encountered in daily life can be classified by their attributes

2D shape transformations

- Identify and draw lines of symmetry
- Create tessellating triangle designs: by reflecting
translating and rotating
- Apply and describe amounts of rotation: half-, quarter-\&
three-quarter-turns

Scope \& Sequence Outcome map

Outcomes	Focus	Content	Located
MA2-RN-01 applies an understanding of place value and the role of zero to represent numbers to at least tens of thousands	Representing numbers using place value A	Whole numbers: Read, represent and order numbers to thousands	Term 1 LS 1, 2, 5 Term 2 LS 1, 4 Term 3 LS 1, 5 Term 4 LS 1
		Whole numbers: Apply place value to partition and regroup numbers up to 4 digits	Term 1 LS 1,2 Term 2 LS 1, 2 Term 3 LS 1, 5 Term 4 LS 1, 4
MA2-AR-01 selects and uses mental and written strategies for addition and subtraction involving 2 - and 3 -digit numbers	Additive relations A	Use the principle of equality	
		Recognise and explain the connection between addition and subtraction	$\begin{aligned} & \text { Term } 1 \text { LS } 2 \\ & \text { Term } 3 \text { LS } 5 \end{aligned}$
		Select strategies flexibly to solve addition and subtraction problems of up to 3 digits	Term 1 LS 2 Term 2 LS 1 Term 3 LS 5 Term 4 LS 1 \qquad
		Represent money values in multiple ways	Term 3 LS 5
MA2-MR-01 represents and uses the structure of multiplicative relations to 10×10 to solve problems	Multiplicative relations A	Generate and describe patterns	Term 1 LS 1,4 Term 2 LS 2 Term 3 LS 1, 2, 3 Term 4 LS 2, 4, 5
		Use arrays to establish multiplication facts from multiples of 2 and 4,5 and 10	Term 2 LS 2 Term 3 LS 1, 2, 3 Term 4 LS 4
		Recall multiplication facts of 2 and 4,5 and 10 and related division facts	Term 1 LS 4 Term 2 LS 2 Term 3 LS 1, 2, 3 Term 4 LS 4
		Represent and solve problems involving multiplication fact families	Term 2 LS 2 Term 3 LS 1 Term 4 LS 4
MA2-PF-01 represents and compares halves, quarters, thirds and fifths as lengths on a number line and their related fractions formed by halving (eighths, sixths and tenths)	Partitioned fractions A	Create fractional parts of a length using techniques other than repeated halving	Term 1 LS 4 Term 2 LS 5 Term 4 LS 2
		Model and represent unit fractions, and their multiples, to a complete whole on a number line	
MA2-GM-01 uses grid maps and directional language to locate positions and follow routes	Geometric measure A	Position: Interpret movement on a map	Term 2 LS 3
		Position: Locate positions on grid maps	
MA2-GM-02 measures and estimates lengths in metres, centimetres and millimetres		Length: Measure and compare objects using metres, centimetres and millimetres	Term 1 LS 4 Term 3 LS 4 Term 4 LS 2

NSW Stage 2 Year 3
Mathletics

Outcomes	Focus	Content	Located
MA2-GM-03 identifies angles and classifies them by comparing to a right angle	Geometric measure A	Angles: Identify angles as measures of turn	Term 2 LS 5 Term 4 LS 5
MA2-2DS-01 compares two-dimensional shapes and describes their features	Two-dimensional spatial structure A	2D shapes: Compare and describe features of two-dimensional shapes	Term 1 LS 3 Term 3 LS 2, 3 Term 4 LS 5
MA2-2DS-02 performs transformations by combining and splitting two-dimensional shapes		2D shapes: Transform shapes by reflecting, translating and rotating	Term 2 LS 3 Term 3 LS 2 Term 4 LS 5
MA2-2DS-03 estimates, measures and compares areas using square centimetres and square metres		Area: Use square centimetres to measure and estimate the areas of rectangles	Term 3 LS 3
		Area: Use square metres to measure and estimate the areas of rectangles	
MA2-3DS-01 measures, records, compares and estimates the masses of objects using uniform informal units	Three-dimensional spatial structure A	3D objects: Make models of three-dimensional objects to compare and describe key features	Term 2 LS 4 Term 3 LS 3
MA2-3DS-02 estimates, measures and compares capacities (internal volumes) using litres, millilitres and volumes using cubic centimetres		Volume: Measure and order containers using litres	Term 2 LS 4 Term 3 LS 3
		Volume: Compare objects using familiar metric units of volume	$\begin{aligned} & \text { Term } 2 \text { LS } 4 \\ & \text { Term } 3 \text { LS } 3 \end{aligned}$
MA2-NSM-01 estimates, measures and compares the masses of objects using kilograms and grams	Non-spatial measure A	Mass: Compare objects using the kilogram	Term 3 LS 4
MA2-NSM-02 represents and interprets analog and digital time in hours, minutes and seconds		Time: Represent and read analog time	$\begin{aligned} & \text { Term } 1 \text { LS } 3 \\ & \text { Term } 2 \text { LS } 5 \end{aligned}$
MA2-DATA-01 collects discrete data and constructs graphs using a given scale	Data A	Collect discrete data	Term 1 LS 5 Term 4 LS 3
		Organise and display data using tables and graphs	$\begin{aligned} & \text { Term } 1 \text { LS } 5 \\ & \text { Term } 4 \text { LS } 3 \end{aligned}$
MA2-DATA- 02 interprets data in tables, dot plots and column graphs		Interpret and compare data	Term 4 LS 3
MA2-CHAN-01 records and compares the results of chance experiments	Chance A	Identify possible outcomes from chance experiments	Term 4 LS 3

LS \& Topic	Outcomes	Focus	Content	New Courses	Activities (courses)	Skill Quests	Challenges	Ebooks
LS 1 Big idea The number system extends infinitely to very large and very small numbers Topic Numbers to 10000	MA2-RN-01 applies an understanding of place value and the role of zero to represent numbers to at least tens of thousands MA2-MR-01 represents and uses the structure of multiplicative relations to 10×10 to solve problems	Representing numbers using place value A Multiplicative relations A	- Whole numbers: Read, represent and order numbers to thousands - Whole numbers: Apply place value to partition and regroup numbers up to 4 digits - Generate and describe patterns	Coming soon: Y3 Representing numbers using place value - Numbers to at least 10000 - Place value	Represent numbers using place value (A) - Which is Bigger? - Which is Smaller? - Place Value - Thousands - Expanding Numbers - Put in Order 1 - Ascending Order - Descending Order - Which is Bigger? - Which is Smaller? - Greater Than or Less Than 1 - Place Value 3 - Partition and Rename 2 - Nearest 1000 ? - Missing Numbers 1 Non-spatial measure: mass \& time (A) - What's the Temperature (Celsius)?	Represent 4-digit numbers - Reading \& representing numbers to 1000 - Counting by tens \& hundreds to 1000 - Comparing \& ordering numbers up to 10000 - Partitioning numbers to 4 digits	Number \& Algebra, Whole Number 2-4 - Top score (DOK2 - Partitioning 4-digit numbers ©OK 3 - Bank mistake DOK 3 - Alex's number ©OK 3 - Find the 4 digits ©OK3 - Football friends (DOK 3 - 33 beads (DOK 3 Number \& Algebra, Addition \& Subtraction 2-4 - Magic 9 ©OK 3 Number \& Algebra, Whole Number 3-5 - Build the number ©OK 3	Reading and Understanding Whole Numbers - Looking at whole numbers pp 1-6 - Place value of whole numbers pp 1-3 (Y4-D) Reading and Understanding Whole Numbers - Looking at whole numbers pp 1-8 - Place value of whole numbers pp 1-8
LS 2 Big idea Addition and subtraction problems can be solved by using a variety of strategies Topic Addition and subtraction: mental strategies	MA2-AR-01 selects and uses mental and written strategies for addition and subtraction involving 2-and 3-digit numbers MA2-RN-01 applies an understanding of place value and the role of zero to represent numbers to at least tens of thousands	Additive relations A Representing numbers using place value A	- Use the principle of equality - Recognise and explain the connection between addition and subtraction - Select strategies flexibly to solve addition and subtraction problems of up to 3 digits - Whole numbers: Read, represent and order numbers to thousands - Whole numbers: Apply place value to partition and regroup numbers up to 4 digits	Coming soon	Additive relations: up to 3 digits (A) - Add Two 2-Digit Numbers - Adding to 2-digit numbers - Magic Mental Addition - Complements to 50 and 100 - Add 3 Numbers: Bonds to 100 - Compensation - Add - Estimate Sums - Subtract Tens - Magic Mental Subtraction - Column Subtraction - 2-Digit Differences: Regroup - Repartition to Subtract - Compensation - Subtract - Estimate Differences - Bump Add and Subtract - Related Facts 1 - Bar Model Problems 1 - Bar Model Problems 2 - Missing Values	Mental strategies to add or subtract - Adding using jump strategy to 3 digits - Subtracting using jump strategy to 3 digits - Add/subtract using jump strategy to 3 digits - Adding using bridging to 10 up to 3 digits - Subtracting using bridging to 10 up to 3 digits - Add/subtract using bridging to 10 up to 3 digits - Adding using split strategy to 3 digits - Subtracting using split strategy to 3 digits - Add/subtract using split strategy to 3 digits - Adding using round \& compensate to 3 digits - Subtracting using round \& compensate to 3 digits - Add/subtract using round \& compensate to 3 digits Select strategies to add or subtract - Add/subtract using bar model to 3 digits - Selecting strategies to add/subtract to 3 digits Addition \& subtraction to $\mathbf{3}$ digits - Adding \& subtracting multiple single-digit numbers - Bonds to 100 - Connecting addition \& subtraction - Estimating with addition \& subtraction - Add/subtract multiples of 10 to 3-digit numbers	Number \& Algebra, Addition \& Subtraction 2-4 - Calculate through this maze ©OK3 - Make 200 (DOK3) - Magic 9 (ООК3)	Addition and Subtraction - Addition mental strategies pp 1-4 - Subtraction mental strategies pp 15-16 Addition and Subtraction - Addition mental strategies pp 1-4 - Subtraction mental strategies pp 16-19

					NSW New Sy	s (2023) S2 Year 3		
LS \& Topic	Outcomes	Focus	Content	New Courses	Activities (courses)	Skill Quests	Challenges	Ebooks
LS 3 Big idea What needs to be measured determines the unit of measurement Topic Time	MA2-NSM-02 represents and interprets analog and digital time in hours, minutes and seconds MA2-2DS-01 compares two-dimensional shapes and describes their features	Non-spatial measure A Two-dimensional spatial structure A	- Time: Represent and read analog time - 2D shapes: Compare and describe features of two-dimensional shapes	Coming soon	Non-spatial measure: mass \& time (A) - Half Hour Times - Five Minute Times	Represent time using analogue displays - Representing \& reading analogue time displays	Measurement, Time 2-4 - Scenic stroll ©OK3	Time and Money - Time O'clock p 14 - Time Half Past pp 15-19 - Time Quarter Past pp 20-21 - Time Quarter To p 22 - Time Quarter to and Past p 23 - Time- A Day p 24
LS 4 Big idea Fractions represent multiple ideas and can be represented in different ways Topic Simple fractions	MA2-PF-01 represents and compares halves, quarters, thirds and fifths as lengths on a number line and their related fractions ... MA2-GM-02 measures and estimates lengths in metres, centimetres and millimetres MA2-MR-01 represents and uses the structure of multiplicative relations to 10×10 to solve problems	Partitioned fractions A Geometric measure A Multiplicative relations A	- Create fractional parts of a length using techniques other than repeated halving - Model and represent unit fractions, and their multiples, to a complete whole on a number line - Length: Measure and compare objects using metres, centimetres and millimetres - Generate and describe patterns - Recall multiplication facts of 2 and 4,5 and 10 and related division facts	Y3 Partitioned fractions - Halves, Quarters and Eighths - Unit fractions 1 - Unit fractions 2 - Proper fractions	Partitioned fractions (A) - Halves and Quarters - Thirds and Sixths - Shade Fractions - Identifying Fractions on a Number Line - Equivalent Fraction Wall 1	Halves, quarters, thirds \& fifths - Halves, quarters \& eighths - Thirds \& fifths - Working with unit fractions		(Y3) Rich Learning Task - Build a number (r4-D) Fractions - Introducing fractions pp 1-12 (Y5-E) Fractions - Working with fractions pp 6-11
LS 5 Big idea Questions can be asked and answered by collecting and interpreting data Topic Data	MA2-DATA-01 collects discrete data and constructs graphs using a given scale MA2-DATA-02 interprets data in tables, dot plots and column graphs MA2-RN-01 applies an understanding of place value and the role of zero to represent numbers to at least tens of thousands	Data A Representing numbers using place value A	- Collect discrete data - Organise and display data using tables and graphs - Whole numbers: Read, represent and order numbers to thousands	Coming soon	Data (A) - Sorting Data - Column Graphs - Picture Graphs: Single-Unit Scale - Pictographs - Tallies	Collect \& organise discrete data - Posing questions \& collecting discrete data - Organising \& displaying discrete data using graphs Read tables, dot plots \& column graphs - Interpreting tables \& column graphs - Comparing data displays	Statistics \& Data 2-4 - Transport trouble DOK 3 -What's missing? ©OK 3	Y4-D Chance and Data - Data pp 10-14 - Data - dot plots pp 17-18

LS \& Topic	Outcomes	Focus	Content		NSW New Syllabus (2023) S2 Year 3			
				New Courses	Activities (courses)	Skill Quests	Challenges	Ebooks
LS 1 Big idea The number system extends infinitely to very large and very small numbers Topic Numbers to 100000	MA2-RN-01 applies an understanding of place value and the role of zero to represent numbers to at least tens of thousands MA2-AR-01 selects and uses mental and written strategies for addition and subtraction involving 2-and 3-digit numbers	Representing numbers using place value A Additive relations A	- Whole numbers: Read, represent and order numbers to thousands - Whole numbers: Apply place value to partition and regroup numbers up to 4 digits - Use the principle of equality - Select strategies flexibly to solve addition and subtraction problems of up to 3 digits	Coming soon: Y3 Representing numbers using place value - Partitioning - Number lines - Rounding - Compare numbers - Order numbers		Represent 5-digit numbers - Reading, representing \& ordering numbers to 10000		Y5-E Reading and Understanding Whole Numbers - Looking at whole numbers reading and writing numbers to 9999 pp 1-2 - Looking at whole numbers ordering numbers to 9999 pp 3-4 - Place value of whole numbers - place value to 4 digits pp 9-10 - Place value of whole numbers - expanded notation pp 11-12
LS 2 Big idea Multiplicative thinking involves flexible use of multiplication and division concepts, strategies and representations Topic Multiplication facts for $2,4,5$ and 10	MA2-MR-01 represents and uses the structure of multiplicative relations to 10×10 to solve problems MA2-RN-01 applies an understanding of place value and the role of zero to represent numbers to at least tens of thousands	Multiplicative relations A Representing numbers using place value A	- Use arrays to establish multiplication facts from multiples of 2 and 4,5 and 10 - Recall multiplication facts of 2 and 4,5 and 10 and related division facts - Represent and solve problems involving multiplication fact families - Whole numbers: Apply place value to partition and regroup numbers up to 4 digits - Generate and describe patterns	Coming soon	Multiplicative relations (A) - Counting by Tens - Counting by Twos - Skip Counting - Grouping in Fours - Grouping in Fives - Grouping in Tens - Dividing by Two - Dividing by Five - Dividing Tens	Multiplicative facts for 2, 4, 5 \& 10 - Recalling multiplication \& division facts of 2 - Recalling multiplication \& division facts of 4 - Recalling multiplication \& division facts of 5 - Recalling multiplication \& division facts of 10 - Solving problems using multiplication facts		Y5-E) Multiplication and Division - Multiplication facts pp 1-4 Y4-D Multiplication and Division - Division pp 1-6
LS 3 Big idea Visual representations help to understand aspects of the world (chance and position) Topic Position	MA2-GM-01 uses grid maps and directional language to locate positions and follow routes MA2-2DS-02 performs transformations by combining and splitting two-dimensional shapes	Geometric measure A Two-dimensional spatial structure A	- Position: Interpret movement on a map - Position: Locate positions on grid maps - 2D shapes: Transform shapes by reflecting, translating and rotating	Coming soon	Geometric measure: position (A) - Following Directions - Coordinate Meeting Place - What Direction was That? - Using a key	Use grid maps to describe position - Interpreting maps to describe position - Locating positions on a map	Geometry, Symmetry, Location 2-4 - A day on the farm (DOK3 - Mighty maze ©OK4 Geometry, Symmetry, Location 3-5 - Drawing with grids ${ }^{00 \mathrm{~K} 3}$	Y4-D Shape, Space and Position - Position pp 1-7 - 2D shapes pp 5-7

Scope \mathbb{E} Sequence Term 2

NSW Stage 2 Year 3
Mathletics

LS \& Topic	Outcomes	Focus	Content	New Courses	Activities (courses)	Skill Quests	Challenges	Ebooks
LS 4 Big idea What needs to be measured determines the unit of measurement Topic 3D objects and capacity	MA2-3DS-01 makes and sketches models and nets of three-dimensional objects including prisms and pyramids MA2-3DS-02 estimates, measures and compares capacities (internal volumes) using litres, millilitres and volumes using cubic centimetres MA2-RN-01 applies an understanding of place value and the role of zero to represent numbers to at least tens of thousands	Three-dimensional spatial structure A Representing numbers using place value A	- 3D objects: Make models of three-dimensional objects to compare and describe key features - Volume: Measure and order containers using litres - Volume: Compare objects using familiar metric units of volume - Whole numbers: Read, represent and order numbers to thousands	Coming soon	3D spatial structure: 3D objects (A) - Prisms and Pyramids - Collect the Objects - Match the Object 3D spatial structure: capacity (A) - How Full? - Which Holds More? - Filling Fast!	 cylinders - Identifying prisms - Identifying pyramids \& cylinders - Describing key features of prisms \& pyramids - Making models of prisms \& pyramids - Introducing nets of prisms	Geometry, 3D Shapes 2-4 - Opposite shapes $00 \mathrm{K4}$	(44-D) Shape, Space and Position -3D shapes pp 1-3 (r4-D) Measurement - Volume and capacity p 1
LS 5 Big idea Angles are the primary structural component of many shapes Topic Angles	MA2-GM-03 identifies angles and classifies them by comparing to a right angle MA2-NSM-02 represents and interprets analog and digital time in hours, minutes and seconds MA2-PF-01 represents and compares halves, quarters, thirds and fifths as lengths on a number line and their related fractions formed by halving (eighths, sixths and tenths)	Geometric measure A Partitioned fractions A Non-spatial measure A	- Angles: Identify angles as measures of turn - Time: Represent and read analog time - Create fractional parts of a length using techniques other than repeated halving - Model and represent unit fractions, and their multiples, to a complete whole on a number line	Coming soon	Geometric measure: angle (A) - Equal Angles - Comparing Angles - Right Angle Relation - What Type of Angle? - Classifying Angles	Identify \& compare angles - Identifying angles as measures of turn		Y5-E Space, Shape and Position - Lines, angles and shapes angles pp 2-3

LS \& Topic	Outcomes	Focus	Content	New Courses	Activities (courses)	Skill Quests	Challenges	Ebooks
LS 1 Big idea The number system extends infinitely to very large and very small numbers Topic Patterns	MA2-MR-01 represents and uses the structure of multiplicative relations to 10×10 to solve problems MA2-RN-01 applies an understanding of place value and the role of zero to represent numbers to at least tens of thousands	Multiplicative relations A Representing numbers using place value A	- Generate and describe patterns - Use arrays to establish multiplication facts from multiples of 2 and 4,5 and 10 - Recall multiplication facts of 2 and 4,5 and 10 and related division facts - Represent and solve problems involving multiplication fact families - Whole numbers: Read, represent and order numbers to thousands - Whole numbers: Apply place value to partition and regroup numbers up to 4 digits	Coming soon		Number patterns - Generating/describing patterns (1, 2, 5, 10, 25) - Generating/describing patterns (3, 4, 6, 7, 8, 9) - Identifying number patterns - Investigating odd \& even numbers - Understand the property of 0 \& 1 in multiplication		(Y4-D) Multipication and Division - Mental multiplication strategies pp 1-6 (73-C) Patterns and Algebra - Patterns and functions pp 1-12 - Equations and equivalence pp 13-22
LS 2 Big idea Understanding relationships between the properties of 2D shapes helps visualise and organise spaces in the world Topic 2D shape properties	MA2-2DS-01 compares two-dimensional shapes and describes their features MA2-2DS-02 performs transformations by combining and splitting two-dimensional shapes MA2-MR-01 represents and uses the structure of multiplicative relations to 10×10 to solve problems	Two-dimensional spatial structure A Multiplicative relations A	- 2D shapes: Compare and describe features of two-dimensional shapes - 2D shapes: Transform shapes by reflecting, translating and rotating - Generate and describe patterns - Use arrays to establish multiplication facts from multiples of 2 and 4,5 and 10 - Recall multiplication facts of 2 and 4,5 and 10 and related division facts	Coming soon	2D spatial structure: shape $\&$ area (A) - What Line am I? - Collect the Shapes - Collect More Shapes - Collect the Shapes 2	Identify features of 2D shapes - Comparing \& describing features of quadrilaterals - Identifying, classifying \& sorting 2D shapes	Geometry, 2D shapes 2-4 - Sort these shapes out! DOK 3 - Blip and the rectangle (DOK 3)	(Y4-D Shape, Space and Position - 2 D shapes p 4 Y5-E Shape, Space and Position - Lines and angles pp 8-9

LS \& Topic	Outcomes	Focus	Content	New Courses	Activities (courses)	Skill Quests	Challenges	Ebooks
LS 3 Big idea Multiplicative thinking involves flexible use of multiplication and division concepts, strategies, and representations Topic Linking multiplication to area and volume	MA2-2DS-01 compares two-dimensional shapes ... MA2-2DS-02 performs transformations ... MA2-2DS-03 estimates, measures and compares areas ... MA2-3DS-01 makes and sketches models and nets of three-dimensional ... MA2-3DS-02 estimates, measures and compares capacities ... MA2-MR-01 represents and uses the structure of multiplicative relations to $10 \times 10 \ldots$	Two-dimensional spatial structure A Three-dimensional spatial structure A Multiplicative relations \mathbf{A}	- 2D shapes: Compare and describe features of two-dimensional - Area: Use square centimetres to measure and estimate the areas of rectangles - Area: Use square metres to measure and estimate the areas of rectangles -3D objects: Make models of three-dimensional objects to compare and describe key features - Volume: Compare objects using familiar metric units of volume - Volume: Compare objects using familiar metric units of volume - Generate and describe patterns - Use arrays to establish multiplication facts from multiples of 2 and 4,5 and 10 - Recall multiplication facts of 2 and 4,5 and 10 and related division facts	Coming soon	Multiplicative relations (A) - Arrays 1 - Arrays 2 2D spatial structure: shape $\&$ area (A) - Area of Shapes - Equal Areas 3D spatial structure: capacity (A) - Comparing Volume	Calculate area of a rectangle - Using cm^{2} to measure areas of rectangles - Using m^{2} to measure areas of rectangles Measure capacity \& volume - Measuring \& comparing volumes using cubic blocks - Introducing a formal measure of capacity (litres)	Number \& Algebra, Division 2-4 - Party time ©OK2 Measurement, Volume \& Capacity 2-4 - Cube faces (DOK 3)	(Y3) Rich Learning Task - Freckles Y5-E Series E Length, Area and Perimeter - Area p 5
LS 4 Big idea What needs to be measured determines the unit of measurement Topic Length and mass	MA2-GM-02 measures and estimates lengths in metres, centimetres and millimetres MA2-NSM-01 estimates, measures and compares the masses of objects using kilograms and grams	Geometric measure A Non-spatial measure A	- Length: Measure and compare objects using metres, centimetres and millimetres - Mass: Compare objects using the kilogram	Coming soon	Geometric measure: length (A) - How Long is That? - Measuring Length - Perimeter of Shapes - Converting cm and mm - Centimetres and Metres Non-spatial measure: mass \& time (A) - Everyday Mass	Use metric measurements for lengths - Measuring in $\mathrm{m}, \mathrm{cm}, \mathrm{mm}$ - Selecting measures for length (m, cm, mm) - Comparing length measurements - Ordering length measurements Measure mass in $\mathbf{k g}$ \& \mathbf{g} - Introducing a formal measure for weight (kg)	Measurement, Length 2-4 - Measured to perfection (mm) DOK 2 - Paw prints $0 \mathrm{OK}_{3}$	(Y4-D) Measurement - Units of length pp 1-5
LS 5 Big idea Addition and subtraction problems can be solved by using a variety of strategies Topic Addition and subtraction problems	MA2-AR-01 selects and uses mental and written strategies for addition and subtraction involving 2- and 3-digit numbers MA2-RN-01 applies an understanding of place value and the role of zero to represent numbers to at least tens of thousands	Additive relations A Representing numbers using place value A	- Use the principle of equality - Recognise and explain the connection between addition and subtraction - Select strategies flexibly to solve addition and subtraction problems of up to 3 digits - Represent money values in multiple ways - Whole numbers: Read, represent and order numbers to thousands - Whole numbers: Apply place value to partition and regroup numbers up to 4digits	Coming soon		Select strategies to add or subtract - Using addition \& subtraction with money Solve number sentences with add/subtract - Solving addition \& subtraction number sentences		Y5-E Addition and Subtraction - Addition mental strategies pp 12-13 - Subtraction mental strategies pp 24-25

LS \& Topic	Outcomes	Focus	Content	New Courses	Activities (courses)	Skill Quests	Challenges	Ebooks
LS 1 Big idea The number system extends infinitely to very large and very small numbers Topic Number review	MA2-RN-01 applies an understanding of place value and the role of zero to represent numbers to at least tens of thousands MA2-AR-01 selects and uses mental and written strategies for addition and subtraction involving 2-and 3-digit numbers	Representing numbers using place value A Additive relations A	- Whole numbers: Read, represent and order numbers to thousands - Whole numbers: Apply place value to partition and regroup numbers up to 4 digits - Use the principle of equality - Select strategies flexibly to solve addition and subtraction problems of up to 3 digits	Coming soon	Refer to: - Term 1, Learning Sequence 1 - Term 2, Learning Sequence 1 - Term 3, Learning Sequence 1			Y6-F Reading and Understanding Whole Numbers - Looking at whole numbers pp 1-3 Y6-F Addition and Subtraction - Addition Mental Strategies pp 1-8 - Subtraction Mental Strategies pp 9-16
LS 2 Big idea Fractions represent multiple ideas and can be represented in different ways Topic Fractions review	MA2-PF-01 represents and compares halves, quarters, thirds and fifths as lengths ... MA2-GM-02 measures and estimates lengths in metres, centimetres and millimetres MA2-MR-01 represents and uses the structure of multiplicative \qquad	Partitioned fractions A Geometric measure A Multiplicative relations A	- Create fractional parts of a length using techniques other than repeated halving - Model and represent unit fractions, and their multiples, to a complete whole on a number line - Length: Measure and compare objects using metres, centimetres and millimetres - Generate and describe patterns - Recall multiplication facts of 2 and 4,5 and 10 and related division facts	Y3 Partitioned Fractions - Fractions and wholes - Unit fractions and sharing	Refer to: - Term 1, Learning Sequence 4			(${ }^{3}$ 3) Rich Learning Task - Build a number (Y4-D) Fractions - Introducing fractions pp 1-12 Y5-E Fractions - Working with fractions pp 6-11
LS 3 Big idea Questions can be asked and answered by collecting and interpreting data Topic Chance	MA2-CHAN-01 records and compares the results of chance experiments MA2-DATA-01 collects discrete data and constructs graphs using a given scale MA2-DATA-02 interprets data in tables, dot plots and column graphs	Chance A Data A	- Identify possible outcomes from chance experiments - Collect discrete data - Organise and display data using tables and graphs - Interpret and compare data	Coming soon	Chance (A) - Most Likely and Least Likely - How many Combinations? - Will it Happen?	Chance concepts - Identifying outcomes from chance experiments	Chance \& Probability 2-4 - Picking plums DOK 3 - Multiple mayhem ©OK3	Y4-D Chance and Data - Data pp 15-21 Y5-E Chance and Data - Chance pp 1-2

LS \& Topic	Outcomes	Focus	Content	New Courses	Activities (courses)	Skill Quests	Challenges	Ebooks
LS 4 Big idea Multiplicative thinking involves flexible use of multiplication and division concepts, strategies and representations Topic Multiplication and division problems	MA2-MR-01 represents and uses the structure of multiplicative relations to 10×10 to solve problems MA2-RN-01 applies an understanding of place value and the role of zero to represent numbers to at least tens of thousands	Multiplicative relations A Represents numbers using place value A	- Use arrays to establish multiplication facts from multiples of 2 and 4,5 and 10 - Recall multiplication facts of 2 and 4,5 and 10 and related division facts - Represent and solve problems involving multiplication fact families - Whole numbers: Apply place value to partition and regroup numbers up to 4 digits - Generate and describe patterns	Coming soon	Multiplicative relations (A) - Model multiplication to 5×5 - Fact Families: Multiply and Divide - Multiplication Turnarounds - Halve it!	Solve multiplication \& division problems - Find the missing number in mult/divison problems	Number \& Algebra, Division 2-4 - A wheel problem DOK 3	(Y4-D Multiplication and Division - Introducing multiplication groups of 5 pp 1-4 - Introducing Multiplication - 10 times tables pp 5-6 - Introducing multiplication - multiplying numbers by 0 and 1 p 7 - Multiplication facts - 2 times table pp 8-9 - Multiplication facts - 4 times table pp 10-11
LS 5 Big idea Shapes encountered in daily life can be classified by their attributes Topic 2D shape transformations	MA2-2DS-01 compares two-dimensional shapes and describes their features MA2-2DS-02 performs transformations by combining and splitting two-dimensional shapes MA2-MR-01 represents and uses the structure of multiplicative relations to 10×10 to solve problems MA2-GM-03 identifies angles and classifies them by comparing to a right angle	Geometric measure A Two-dimensional spatial structure A Multiplicative relations A	- 2D shapes: Compare and describe features of two-dimensional shapes - 2D shapes: Transform shapes by reflecting, translating and rotating - Generate and describe patterns - Angles: Identify angles as measures of turn	Coming soon	2D spatial structure: transformations (A) - Symmetry - Symmetry or Not? - Flip, Slide, Turn - Transformations - Rotational Symmetry	Perform transformations - Transforming shapes by translation \& reflections - Recognising line symmetry - Transforming shapes by rotation	Geometry, Symmetry, Location 2-4 - Flutter bye ©OK4	\qquad Space Shape and Position - Investigating 2D shapes symmetry and tessellation pp 9-10

