Syllabus comparison chart

NSW Mathematics K-10 Syllabus (2012)				NSW Mathematics 3-6 Syllabus (2023)				Activities (courses): Topics	Skill Quests
Strand	Substrands	Outcomes	Code	Strand	Substrands	Outcomes	Code	NSW New Syllabus (2023) S2 Year 4	
Number and Algebra	Whole Numbers 2	applies place value to order, read and represent numbers of up to five digits	MA2-4NA	Number and Algebra	Representing numbers using place value B	Applies an understanding of place value and the role of zero to represent numbers to at least tens of thousands.	MA2-RN-01		Represent 5-digit numbers
						Represents and compares decimals up to 2 decimal places using place value	MA2-RN-02	Represent numbers using place value (B)	Represent decimals to hundredths
	Addition and Subtraction 2	uses mental and written strategies for addition and subtraction involving two-, three-, four- and five-digit numbers	MA2-5NA		Additive relations B	Selects and uses mental and written strategies for addition and subtraction involving 2- and 3 -digit numbers.	MA2-AR-01	Additive relations (B)	Addition \& subtraction to 4 digits
						Completes number sentences involving addition and subtraction by finding missing values.	MA2-AR-02		Solve number sentences with add/subtract
	Multiplication and Division 2	uses mental and informal written strategies for multiplication and division	MA2-6NA		Multiplicative relations B	Represents and uses the structure of multiplicative relations to 10×10 to solve problems.	MA2-MR-01	Multiplicative relations : multiply (B) Multiplicative relations : divide (B)	Number sequences Use doubling to multiply Multiplication facts: 3 , 6, 7, 8, 9 Multiply by multiples of 10
	Patterns and Algebra 2	generalises properties of odd and even numbers, generates number patterns, and completes simple number sentences by calculating missing values	MA2-8NA			Completes number sentences involving multiplication and division by finding missing values.	MA2-MR-02		Solve multiplication \& division problems
	Fractions and Decimals 2	represents, models and compares commonly used fractions and decimals	MA2-7NA		Partitioned fractions B	Represents and compares halves, quarters, thirds and fifths as lengths on a number line and their related fractions formed by halving (eighths, sixths and tenths).	MA2-PF-01	Parritioned fractions (B)	Understand equivalent fractions

Syllabus comparison chart

NSW Mathematics K-10 Syllabus (2012)				NSW Mathematics 3-6 Syllabus (2023)				Activities (courses): Topics	Skill Quests
Strand	Substrands	Outcomes	Code	Strand	Substrands	Outcomes	Code	NSW New Syllabus (2023) S2 Year 4	
Statistics and Probability	Data 2	selects appropriate methods to collect data, and constructs, compares, interprets and evaluates data displays, including tables, picture graphs and column graphs	MA2-18SP	Statistics and Probability	Data B	Collects discrete data and constructs graphs using a given scale.	MA2-DATA-01	Data (B)	Data collection methods
						- Interprets data in tables, dot plots and column graphs	MA2-DATA-02		Interpret data with many-to-one scales
	Chance 2	describes and compares chance events in social experimental contexts	MA2-19SP		Chance B	Records and compares the results of chance experiments.	MA2-CHAN-01	Chance (B)	Describe the likelihood of outcomes

Learning sequence	Term one	Term two
LS 1	Number and Algebra	Number and Algebra
	Big idea: The number system extends infinitely to very large and very small numbers	Big idea: The number system extends infinitely to very large and very small numbers
	Numbers to 1 million	Introducing decimals
	- Apply place value to hundreds-of-thousands - Read, represent and order numbers to 1000000 - Partition 6 -digit numbers - Round to nearest 1000,10000 , and 100000	- Express decimals as tenths and hundredths - Locate, compare \& order tenths and hundredths - Make connections between fractions and decimal notation
LS 2	Number and Algebra	Number and Algebra
	Big idea: Addition and subtraction problems can be solved by using a variety of strategies	Big idea: Multiplicative thinking involves flexible use of multiplication and division concepts, strategies and representations
	Addition and subtraction	Multiplication and division
	- Use quantity values and non-standard partitioning - Use algorithms with and without regrouping - Choose appropriate strategies - Estimate to check solutions	- Identify and continue number patterns with multiples - Apply commutative and associative properties of multiplication - Use flexible partitioning - Recall multiplication facts to 10×10
LS 3	Measurement and Space	Measurement and Space
	Big idea: What needs to be measured determines the unit of measurement	Big idea: Visual representations help to understand aspects of the world
	Time	Position
	- Read and set time on digital devices - Determine time remaining - Use am and pm notation - Relate analogue and digital time	- Create and interpret grid maps - Use compass directions (N, S, E, W) - Describe journeys using directional language
LS 4	Number and Algebra	Measurement and Space Number and Algebra
	Big idea: Fractions represent multiple ideas and can be represented in different ways	Big idea: What needs to be measured determines the unit of measurement
	Fractions	3D objects and capacity
	- Represent equivalence - Concrete materials, diagrams and number lines - Compare partitioned fractions with same-size whole - Regroup fractional parts beyond one	- Identify features of prisms, pyramids and cylinders: faces, edges, vertices, curved surfaces - Sketch 3D objects from different views - Measure and record capacity using mL and L - Estimate the capacity of containers
LS 5	Statistics and Probability	Measurement and Space Number and Algebra
	Big idea: Questions can be asked and answered by collecting and interpreting data	Big idea: Angles are the primary structural component of many shapes
	Data	Angles
	- Create, refine and conduct surveys to collect categorical or numerical data - Use many-to-one scales - Create column graphs - Interpret and evaluate effectiveness of various data displays	- Compare angles to a right angle - Describe angles in comparison to quarter-turns

Term three

Number and Algebra

Big idea: The number system extends infinitely to very large and very small numbers

Patterns

- Place value review of Base 10 system
- Patterns
- Algebra

Measurement and Space

Big idea: Understanding relationships between the
properties of 2D shapes helps visualise and organise spaces

in the world

2D shape properties

- Review properties of 2D shapes
- Combine common 2D shapes to form other shapes
- Split other shapes into two or more common shapes

Measurement and Space
 Number and Algebra

Big idea: Multiplicative thinking involves flexible use of
multiplication and division concepts, strategies, and representations
Linking multiplication to area and volume

- Connect grouping to arrays and area models
- Estimate, measure \& record area in cm 2 (using grid
overlays) and m 2
- Sketch prisms on isometric grids
- Create models using connecting cubes

Measurement and Space

Number and Algebra
Big idea: What needs to be measured determines the unit of measurement

Length and mass

- Estimate, measure and compare lengths
- Identify and measure perimeter
- Convert between cm and m , and m and cm
- Record lengths using decimals to 2 places
- Record and compare mass using g and Kg

Number and Algebra

Big idea: Addition and subtraction problems can be solved
by using a variety of strategies
Addition and subtraction problems

- Use flexible strategies to solve word problems involving addition and subtraction
- Use addition and subtraction to solve problems involving money and budgeting

Term four

Number and Algebra

Big idea: The number system extends infinitely to very large and very small numbers

Number review

Review:

- Term 1, Learning Sequence 1
- Term 2, Learning Sequence 1
- Term 3, Learning Sequence 1

Number and Algebra

Big idea: Fractions represent multiple ideas and can be represented in different ways

Fractions applications

- Add and subtract fractions with the same or related denominators
- Solve word problems involving fractions

Statistics and Probability

Big idea: Questions can be asked and answered by collecting and interpreting data

Chance

- Use the terms equally likely, likely and unlikely
- Compare the likelihood of obtaining outcomes
- Identify when events are affected by previous events

Number and Algebra

Big idea: Multiplicative thinking involves flexible use of multiplication and division concepts, strategies, and representations
Multiplication and division problems

- Use flexible strategies to solve word problems involving multiplication and division

Measurement and Space

Big idea: Shapes encountered in daily life can be classified by their attributes

Transformations of 2D shapes

- Create and record tessellating designs using triangles or quadrilaterals: reflecting, translating and rotating
- Apply and describe amounts of rotation: half, quarter and three-quarter-turns

Outcomes	Focus	Content	Located
MA2-RN-01 applies an understanding of place value and the role of zero to represent numbers to at least tens of thousands	Representing numbers using place value B	Whole numbers: Order numbers in the thousands	Term 1 LS 1 Term 2 LS 4 Term 4 LS 1
		Whole numbers: Apply place value to partition, regroup and rename numbers up to 6 digits	$\begin{aligned} & \text { Term } 1 \text { LS 1, } 2 \\ & \text { Term } 2 \text { LS } 2 \\ & \text { Term } 3 \text { LS 1, } 5 \\ & \text { Term } 4 \text { LS 1, } 4 \end{aligned}$
		Whole numbers: Recognise and represent numbers that are 10 , 100 or 1000 times as large	$\begin{aligned} & \text { Term } 1 \text { LS 1, } 2 \\ & \text { Term } 2 \text { LS 1, } 2 \\ & \text { Term } 3 \text { LS 1, } 5 \\ & \text { Term } 4 \text { LS 1, } 4 \end{aligned}$
MA2-RN-02 represents and compares decimals up to 2 decimal places using place value		Decimals: Extend the application of the place value system from whole numbers to tenths and hundredths	Term 1 LS 4 Term 2 LS 1 Term 3 LS 1, 4 Term 4 LS 1
		Decimals: Make connections between fractions and decimal notation	Term 1 LS 4 Term 2 LS 1 Term 3 LS 1 Term 4 LS 1, 2
MA2-AR-01 selects and uses mental and written strategies for addition and subtraction involving 2 - and 3 -digit numbers	Additive relations B	Partition, rearrange and regroup numbers to at least 1000 to solve additive problems	Term 1 LS 2 Term 2 LS 1 Term 3 LS 5 Term 4 LS 1
		Apply addition and subtraction to familiar contexts, including money and budgeting	Term 3 LS 5
MA2-AR-02 completes number sentences involving addition and subtraction by finding missing values		Complete number sentences involving additive relations to find unknown quantities	Term 3 LS 5
MA2-MR-01 represents and uses the structure of multiplicative relations to 10×10 to solve problems	Multiplicative relations B	Investigate number sequences involving related multiples	Term 1 LS 1 Term 2 LS 2 Term 3 LS 1 Term 4 LS 4
		Use known number facts and strategies	Term 1 LS 1 Term 2 LS 2 Term 3 LS 1 Term 4 LS 4
		Use the structure of the area model to represent multiplication and division	Term 2 LS 2 Term 3 LS 3 Term 4 LS 4
		Use number properties to find related multiplication facts	Term 2 LS 2 Term 3 LS 3 Term 4 LS 4
		Operate with multiples of 10	Term 1 LS 1 Term 2 LS 2 Term 3 LS 3 Term 4 LS 4
MA2-MR-02 completes number sentences involving multiplication and division by finding missing values	Multiplicative relations B	Represent and solve word problems with number sentences involving multiplication or division	Term 2 LS 2 Term 3 LS 3 Term 4 LS 4

Outcomes	Focus	Content	Located
MA2-PF-01 represents and compares halves, quarters, thirds and fifths as lengths on a number line and their related fractions formed by halving (eighths, sixths and tenths)	Partitioned fractions B	Model equivalent fractions as lengths	$\begin{aligned} & \text { Term } 1 \text { LS } 4 \\ & \text { Term } 4 \text { LS } 2 \end{aligned}$
		Represent fractional quantities equal to and greater than one	Term 1 LS 4 Term 2 LS 5 Term 4 LS 2
MA2-GM-01 uses grid maps and directional language to locate positions and follow routes	Geometric measure B	Position: Create and interpret grid maps	Term 2 LS 3
		Position: Use directional language and describe routes with grid maps	Term 2 LS 3
MA2-GM-02 measures and estimates lengths in metres, centimetres and millimetres		Length: Use scaled instruments to measure and compare lengths	Term 1 LS 4 Term 3 LS 4 Term 4 LS 2
MA2-GM-03 identifies angles and classifies them by comparing to a right angle	Geometric measure B	Angles: Compare angles to a right angle	$\begin{aligned} & \text { Term } 2 \text { LS } 5 \\ & \text { Term } 4 \text { LS } 5 \end{aligned}$
MA2-2DS-01 compares two-dimensional shapes and describes their features	Two-dimensional spatial structure B	2D shapes: Create two-dimensional shapes that result from combining and splitting common shapes	Term 1 LS 3 Term 3 LS 2 Term 4 LS 5
MA2-2DS-02 performs transformations by combining and splitting two-dimensional shapes		2D shapes: Create symmetrical patterns and shapes	$\begin{aligned} & \text { Term } 3 \text { LS } 2 \\ & \text { Term } 4 \text { LS } 5 \end{aligned}$
MA2-2DS-03 estimates, measures and compares areas using square centimetres and square metres	Two-dimensional spatial structure B	Area: Measure the areas of shapes using the grid structure	$\begin{aligned} & \text { Term } 3 \text { LS } 2,3 \\ & \text { Term } 4 \text { LS } 5 \end{aligned}$
		Area: Compare surfaces using familiar metric units of area	$\begin{aligned} & \text { Term } 3 \text { LS 2, } 3 \\ & \text { Term } 4 \text { LS } 5 \end{aligned}$
MA2-3DS-01 makes and sketches models and nets of three-dimensional objects including prisms and pyramids	Three-dimensional spatial structure B	3D objects: Connect three-dimensional objects and two-dimensional representations	$\begin{aligned} & \text { Term } 2 \text { LS } 3,4 \\ & \text { Term } 3 \text { LS } 3 \end{aligned}$
MA2-3DS-02 estimates, measures and compares capacities (internal volumes) using litres, millilitres and volumes using cubic centimetres		Volume: Use scaled instruments to measure and compare capacities (internal volumes)	Term 2 LS 4
MA2-NSM-01 estimates, measures and compares the masses of objects using kilograms and grams	Non-spatial measure B	Mass: Use scaled instruments to measure and compare masses	Term 3 LS 4
MA2-NSM-02 represents and interprets analog and digital time in hours, minutes and second		Time: Represent and interpret digital time displays	Term 1 LS 3
		Time: Use am and pm notation	Term 1 LS 3
MA2-DATA-01 collects discrete data and constructs graphs using a given scale	Data B	Select and trial methods for data collection	$\begin{aligned} & \text { Term } 1 \text { LS } 5 \\ & \text { Term } 4 \text { LS } 3 \end{aligned}$
MA2-DATA-02 interprets data in tables, dot plots and column graphs		Construct and interpret data displays with many-to-one scales	$\begin{aligned} & \text { Term } 1 \text { LS } 5 \\ & \text { Term } 4 \text { LS } 3 \end{aligned}$
MA2-CHAN-01 records and compares the results of chance experiments	Chance B	Describe the likelihood of outcomes of chance events	Term 4 LS 3
		Identify when events are affected by previous events	Term 4 LS 3

LS \& Topic	Outcomes	Focus	Content	New Courses	Activities (courses)	Skill Quests	Challenges	Ebooks
LS 1 Big idea The number system extends infinitely to very large and very small numbers Topic Numbers to 1 million	MA2-RN-01 applies an understanding of place value and the role of zero to represent numbers to at least tens of thousands MA2-MR-01 represents and uses the structure of multiplicative relations to 10×10 to solve problems	Representing numbers using place value B Multiplicative relations B	- Whole numbers: Order numbers in the thousands - Whole numbers: Apply place value to partition, regroup and rename numbers up to 6 digits - Whole numbers: Recognise and represent numbers that are 10,100 or 1000 times as large - Investigate number sequences involving related multiples - Use known number facts and strategies - Operate with multiples of 10	Coming soon: Y4 Representing numbers using place value - Numbers to at least 100 000s - Place value - Partitioning - Using number lines - Rounding - Compare numbers - Order numbers	Represent numbers using place value (B) - Expanded Notation - Numbers in Words - Partition and Rename 3 - Rounding Numbers - Numbers from Words to Digits 1 - Missing Numbers 2	Represent 4-digit numbers - Reading \& representing numbers to 1000 - Comparing \& ordering numbers up to 10000 - Partitioning numbers to 4 digits Represent 5-digit numbers - Reading, representing \& ordering numbers to 10000 - Rounding numbers to 10000 - Partitioning 5-digit numbers	Number \& Algebra, Whole Number 2-4 - Swap the digits (DOK 2 Number \& Algebra, Whole Number 3-5 - Exploring a 5-digit number (DOK 2 - Target numbers! DOK 3 - Too much information (DOK 3 Number \& Algebra, Whole Number 4-6 - Mysterious numbers DOK 2 - Clued in DOK2 - Big number split (OOK 3	(Y5-E Reading and Understanding Whole Numbers - Looking at whole numbers - read and write numbers to 999999 pp 1-2 - Looking at whole numbers - order numbers to 999 999 pp 3-4 - Place value of whole numbers - place value to 6 digits pp 13-14
LS 2 Big idea Addition and subtraction problems can be solved by using a variety of strategies Topic Addition and subtraction	MA2-AR-01 selects and uses mental and written strategies for addition and subtraction involving 2-and 3-digit numbers MA2-RN-01 applies an understanding of place value and the role of zero to represent numbers to at least tens of thousands	Additive relations B Representing numbers using place value B	- Partition, rearrange and regroup numbers to at least 1000 to solve additive problems - Whole numbers: Apply place value to partition, regroup and rename numbers up to 6 digits - Whole numbers: Recognise and represent numbers that are 10,100 or 1000 times as large	Coming soon	Additive relations (B) - Magic Mental Addition - Magic Mental Subtraction - Compensation - Add - Compensation - Subtract - Split Add and Subtract - Partition Puzzles 1 - Partition Puzzles 2 - Addition Properties - Strategies for Column Addition - Columns that Add - Column Addition 1	Addition \& subtraction to 4 digits - Add/subtract using non-standard partitioning - Add/subtract multiples of 100,1000 \& 10000 - Using algorithms to add (without regrouping) - Using algorithms to add (with regrouping) - Using algorithms to add (with \& without regrouping) - Using algorithms to subtract (without regrouping) - Using algorithms to subtract (with regrouping) - Rounding to estimate answers - Choosing efficient strategies for addition - Choosing efficient strategies for subtraction Solve number sentences with add/subtract - Solving addition \& subtraction number sentences	Number \& Algebra, Addition \& Subtraction 2-4 - Choosing chores ©OK4 Number \& Algebra, Addition \& Subtraction 3-5 - Missing numbers! ©OK 3 - All boxed up ©OK2 - Navigate the number maze 00 K 3 - Shuffle those numbers! (DOK3) - Explore an addition game ©OK3	(Y5-E) Addition and Subtraction - Addition mental strategies - jump strategy pp 1-2 - Addition mental strategies - split strategy pp 3-4 - Addition mental strategies - compensation strategy pp 5-8 - Subtraction mental strategies - jump strategy pp 9-10 - Subtraction mental strategies - split strategy pp 11-12 - Subtraction mental strategies - compensation strategy pp 13-17

Scope \& Sequence Term 1

LS \& Topic	Outcomes	Focus	Content	New Courses	Activities (courses)	Skill Quests	Challenges	Ebooks
LS 3 Big idea What needs to be measured determines the unit of measurement Topic Time	MA2-NSM-02 represents and interprets analog and digital time in hours, minutes and second MA2-2DS-01 compares two-dimensional shapes and describes their features	Non-spatial measure B Two-dimensional spatial structure B	- Time: Represent and interpret digital time displays - Time: Use am and pm notation - 2D shapes: Create two-dimensional shapes that result from combining and splitting common shapes	Coming soon	Non-spatial measure: mass \& time (B) - Quarter To and Quarter Past - What is the Time?	Represent time using digital displays - Representing \& reading digital time displays - Using AM and PM notation	Measurement Time 2-4 - Time for T.V. ©OK 3 - Mystery birthdate ©OK3 Measurement, Time 3-5 - Comparing different measures of time (0ОK2) - The mysteries of time (DOK 2$)$	($44-$ D Time - Telling time - digital pp 3-6 - Measuring time - am and pmp7
LS 4 Big idea Fractions represent multiple ideas and can be represented in different ways Topic Fractions	MA2-PF-01 represents and compares halves, quarters, thirds and fifths as lengths on a number line and their related fractions ... MA2-RN-02 represents and compares decimals up to 2 decimal places using place value MA2-GM-02 measures and estimates lengths in metres, centimetres and millimetres	Partitioned fractions B Representing numbers using place value B Geometric measure B	- Model equivalent fractions as lengths - Represent fractional quantities equal to and greater than one - Decimals: Make connections between fractions and decimal notation - Length: Use scaled instruments to measure and compare lengths	Y4 Partitioned Fractions - Unit fractions - Proper fractions - Equivalence - Mixed numbers and improper fractions	Partitioned fractions (B) - Compare Fractions 1a - Compare Fractions 1b - Comparing Fractions 1 - Equivalent Fraction Wall 1	Unit fractions - Working with unit fractions Understand equivalent fractions - Modelling equivalent fractions	Number \& Algebra, Fractions 2-4 - Decorate using fractions (00K2) Number \& Algebra, Fractions 3-5 - Running a fraction of the race (ГОК 2)	(Y4-D Fractions - Types of fractions equivalent fractions pp 12-14
LS 5 Big idea Questions can be asked and answered by collecting and interpreting data Topic Data	MA2-DATA-01 collects discrete data and constructs graphs using a given scale MA2-DATA-02 interprets data in tables, dot plots and column graphs	Data B	- Select and trial methods for data collection - Construct and interpret data displays with many-to-one scales	Coming soon	Data (B) - Picture Graphs: with scale \& half symbols - Reading from a Column Graph - Making Picture Graphs: With Scale	Data collection \& display - Organising \& displaying discrete data using graphs Interpret data with many-to-one scales - Interpreting displays with many-to-one scales	Statistics \& data 2-4 - Fruitful investigation (DOK 3 Statistics \& data 3-5 - Watch out! (DOK 2) - Create a picture graph (00K3)	($\mathrm{Y} 4-\mathrm{D}$ Chance and Data - Data - asking questions and collecting data pp 12-13 - Data - tallies p 14 - Data - column graphs pp 15-16 - Data - picture graphs pp 17-18

LS \& Topic	Outcomes	Focus	Content		NSW New Syllabus (2023) S2 Year 4			
				New Courses	Activities (courses)	Skill Quests	Challenges	Ebooks
LS 1 Big idea The number system extends infinitely to very large and very small numbers Topic Introducing decimals	MA2-RN-02 represents and compares decimals up to 2 decima places using place value MA2-RN-01 applies an understanding of place value and the role of zero to represent numbers to at least tens of thousands MA2-AR-01 selects and uses mental and written strategies for addition and subtraction involving 2 - and 3-digit numbers	Representing numbers using place value B Additive relations B	- Decimals: Extend the application of the place value system from whole numbers to tenths and hundredths - Decimals: Make connections between fractions and decimal notation - Whole numbers: Recognise and represent numbers that are 10,100 or 1000 times as large - Partition, rearrange and regroup numbers to at least 1000 to solve additive problems	Y4 Decimals: Representing numbers - Decimal tenths - Decimal hundredths - Place value to hundredths - 10 or 100 times larger or smaller - Partitioning decimals - Tenths on the number line - Hundredths on the number line - The nearest whole number - Fractions and decimals	Represent numbers using place value (B) - Decimals on the Number Line - Decimals from Words to Digits 1 - Decimal Place Value - Decimal Order 1	Represent decimals to hundredths - Introducing decimal tenths - Introducing decimal hundredths - Comparing \& ordering decimals to hundredths - Partitioning decimal hundredths - Connecting decimals to common fractions - Connecting decimals \& fractions up to hundredths		(Y5-E Fractions, Decimals, and Percentages - Fractions, decimals and percentages - tenths p 17 - Fractions, decimals and percentages - tenths and hundredths pp 18-19
LS 2 Big idea Multiplicative thinking involves flexible use of multiplication and division concepts, strategies and representations Topic Multiplication and division	MA2-MR-01 represents and uses the structure of multiplicative relations to 10×10 to solve problems MA2-MR-02 completes number sentences involving multiplication and division by finding missing values MA2-RN-01 applies an understanding of place value and the role of zero to represent numbers to at least tens of thousands	Multiplicative relations B Representing numbers using place value B	- Investigate number sequences involving related multiples - Use known number facts and strategies - Use the structure of the area model to represent multiplication and division - Use number properties to find related multiplication facts - Operate with multiples of 10 - Represent and solve word problems with number sentences involving multiplication or division - Whole numbers: Apply place value to partition, regroup and rename numbers up to 6 digits - Whole numbers: Recognise and represent numbers that are 10,100 or 1000 times as large	Coming soon	Multiplicative relations: multiply (B) - Multiples of - Increasing Patterns - Decreasing Patterns - Grouping in Threes - Grouping in Sixes - Grouping in Sevens - Grouping in Nines - Multiplication Turn-Abouts - Related Facts 2 - Times Tables - Bar model $\times \div$ - Grid Methods 1 - Find the Missing Number 2 - Missing Numbers: \times and \div facts Multiplicative relations: divide (B) - Dividing Threes - Dividing Sixes - Dividing Nines - Dividing Sevens - Dividing Eights - Mental Methods Division	Number sequences - Investigating number sequences with multiplication Use doubling to multiply - Use doubling to multiply by 8 Multiplication facts: 3, 6, 7, 8, 9 - Multiplication \& division facts for 3 - Multiplication \& division facts for 6 - Multiplication \& division facts for 7 - Multiplication \& division facts for 8 - Multiplication \& division facts for 9 - Multiplication fact families up to 10×10	Number \& Algebra Multiplication \& Division 4-6 - Multiple relationships DOK2 - Steps to success (OOK2) Number \& Algebra, Patterns 4-6 - Multiple patterns ©OK3	(r4-D) Multiplication and Division - Multiplication facts -8 times table p 5 - Multiplication facts - 3 and 6 times tables pp 6-7 - Using known facts - 9 times table p 8 - Using known facts - 7 times table p 9 - Mental multiplication strategies - multiplying by 10 and 100 - pp 13-14 - Mental division strategies dividing by 10 and 100 p 29

Scope \& Sequence Term 2

LS \& Topic	Outcomes	Focus	Content	New Courses	Activities (courses)	Skill Quests	Challenges	Ebooks
LS 3 Big idea Visual representations help to understand aspects of the world Topic Position	MA2-GM-01 uses grid maps and directional language to locate positions and follow routes MA2-3DS-01 makes and sketches models and nets of three-dimensional objects including prisms and pyramids	Geometric measure B Three-dimensional spatial structure B	- Position: Create and interpret grid maps - Position: Use directional language and describe routes with grid maps - 3D objects: Connect three-dimensional objects and two-dimensional representations	Coming soon	Geometric measure: position (B) - Following Directions - Coordinate Meeting Place - What Direction was That? - Using a key	Use maps \& compass directions - Creating \& interpreting grid maps - Using directional language (cardinal compass)	Geometry, Symmetry, Transformation \& Location 3-5 - Map the way ${ }^{012}$ - Routes on a map (DOK3) - Program the robot (DOK3) Geometry, Symmetry, Location 4-6 - A journey back in time DOK2 - Island towns DOK 3 - Which way? DOK 3 \square	Y4-D Space, Shape and Position - Position - grids and coordinates p 21 - Position - using a map p 22 - Position - compass directions pp 23-24 - Year 5 Series E Position - Directions - using a compass pp 13-14 - Directions - maps pp 15-16
LS 4 Big idea What needs to be measured determines the unit of measurement Topic 3D objects and capacity	MA2-3DS-01 makes and sketches models and nets of three-dimensional objects including prisms and pyramids MA2-3DS-02 estimates, measures and compares capacities (internal volumes) using litres, millilitres and volumes using cubic centimetres MA2-RN-01 applies an understanding of place value and the role of zero to represent numbers to at least tens of thousands	Three-dimensional spatial structure B Representing numbers using place value B	- 3D objects: Connect three-dimensional objects and two-dimensional representations - Volume: Use scaled instruments to measure and compare capacities (internal volumes) - Whole numbers: Order numbers in the thousands	Coming soon	3D spatial structure: 3D objects (B) - Relate Shapes and Solids - Faces, Edges, and Vertices 1 - How Many Faces? - How many Edges? - How many Vertices? - Faces, Edges and Vertices - Naming 3D Objects 3D spatial structure: capacity (B) - Using a Litre - Millilitres and Litres - Litre Conversions	Connect 3D objects with nets - Representing \& drawing 3D objects Read scaled instruments in L \& mL - Using scaled instruments for capacities (L \& mL) - Select appropriate measures for capacity (L \& mL)	Geometry, 3D Shapes 2-4 - Faces, edges and vertices (DOK 3 Geometry, 3D Shapes 3-5 - Net animals ©OK2	Y4-D Space, Shape and Position - Investigating 3D shapes properties of shapes $p 10$ - Investigating 3D shapes drawing 3D shapes pp 11-12 - Investigating 3D shapes different viewpoints p 13 - Investigating 3D shapes nets pp 15-17 Volume, Capacity and Mass - Volume and capacity - litres pp 1-2 - Volume and capacity millilitres pp 3-4 - Volume and capacity measuring volume with cubic centimetres pp 5-8
LS 5 Big idea Angles are the primary structural component of many shapes Topic Angles	MA2-GM-03 identifies angles and classifies them by comparing to a right angle MA2-PF-01 represents and compares halves, quarters, thirds and fifths as lengths on a number line and their related fractions formed by halving (eighths, sixths and tenths)	Geometric measure B Partitioned fractions B	- Angles: Compare angles to a right angle - Represent fractional quantities equal to and greater than one	Coming soon	Geometric measure: angle (B) - Equal Angles - Comparing Angles - Right Angle Relation - What Type of Angle? - Classifying Angles	Classify angles - Classifying angles	Geometry, Angles 2-4 - Right angle sort ©OK3 - Flag flying DOK 4	Y5-E Geometry - Lines and angles - lines p 2 - Lines and angles introducing angles p 3 - Lines and angles measuring angles pp 4-5

LS \& Topic	Outcomes	Focus	Content	New Courses	Activities (courses)	Skill Quests	Challenges	Ebooks
LS 1 Big idea The number system extends infinitely to very large and very small numbers Topic Patterns	MA2-RN-01 applies an understanding of place value and the role of zero to represent numbers ... MA2-RN-02 represents and compares decimals up to 2 decimal places using place value MA2-MR-01 represents and uses the structure of multiplicative relations to 10×10 to solve problems	Representing numbers using place value B Multiplicative relations B	- Whole numbers: Apply place value to partition, regroup and rename numbers up to 6 digits - Whole numbers: Recognise and represent numbers that are 10,100 or 1000 times as large - Decimals: Extend the application of the place value system from whole numbers to tenths and hundredths - Decimals: Make connections between fractions and decimal notation - Investigate number sequences involving related multiples - Use known number facts and strategies - Operate with multiples of 10	Coming soon	Multiplicative relations: multiply (B) - Multiplying by 10,100 , 1000	Represent 5-digit numbers - Recognising numbers that are 10 , 100, 1000 bigger Multiply by multiples of 10 - Multiplying by a multiple of 10		Y4-D Multiplication and Division - Mental multiplication strategies - multiplying by 10 and 100 pp 13-14 - Mental division strategies dividing by 10 and 100 p 29 Patterns and Algebra - Patterns and functions pp 1-12 - Equations and equivalence pp 13-21
LS 2 Big idea Understanding relationships between the properties of 2D shapes helps visualise and organise spaces in the world Topic 2D shape properties	MA2-2DS-01 compares two-dimensional shapes ... MA2-2DS-02 performs transformations by combining and splitting ... MA2-2DS-03 estimates, measures and compares areas ...	Two-dimensional spatial structure B	- 2D shapes: Create two-dimensional shapes that result from combining and splitting common shapes - 2D shapes: Create symmetrical patterns and shapes - Area: Measure the areas of shapes using the grid structure - Area: Compare surfaces using familiar metric units of area	Coming soon	2D spatial structure: shape \& area (B) - What Line am I? - Shapes - Collect the Shapes - Collect More Shapes - Collect the Shapes 2	Identify shapes in composite polygons - Creating shapes from combining \& splitting shapes Identify features of 2D shapes - Identifying, classifying \& sorting 2D shapes	Geometry, 2D Shapes 2-4 - Shape cutter (DOK2 - Transformer shapes (00K 3 - Triangle tiles ©OK 3	
LS 3 Big idea Multiplicative thinking involves flexible use of multiplication and division concepts, strategies, and representations Topic Linking multiplication to area and volume	MA2-2DS-03 estimates, measures and compares areas ... MA2-3DS-01 makes and sketches models and nets of three-dimensional objects ... MA2-MR-01 represents and uses the structure of multiplicative relations to $10 \times 10 \ldots$ MA2-MR-02 completes number sentences involving multiplication and division ...	Two-dimensional spatial structure B Three-dimensional spatial structure B Multiplicative relations B	- Area: Measure the areas of shapes using the grid structure - Area: Compare surfaces using familiar metric units of area - 3D objects: Connect three-dimensional objects and two-dimensional representations - Use the structure of the area model to represent multiplication and division - Use number properties to find related multiplication facts - Operate with multiples of 10 - Represent and solve word problems with number sentences involving multiplication or division	Coming soon	2D spatial structure: shape \& area (B) - Area of Shapes - Equal Areas 3D spatial structure: capacity (B) - How many Blocks? - Volume of Solids and Prisms - 1 cm 3 blocks	Calculate area using grid structure - Measuring area of shapes using the grid structure	Measurement, Area 2-4 - Planning that pool Capacity 3-5 - Face stickers ${ }^{00 K} 3$ Capacity 5-7 - Constructing cubes (DOK 2	(Y4-D Length, Perimeter and Area - Area - square centimetres pp 15-16 - Area - square metres pp 17-18 (Y5-E) Length, Perimeter and Area - Area - introducing area pp 25-26 - Area puzzles p 31 (Y4-D) Volume, Capacity and Mass - Volume and capacity measuring volume with cubic centimetres p 5

NSW New Syllabus (2023) S2 Year 4								
LS \& Topic	Outcomes	Focus	Content	New Courses	Activities (courses)	Skill Quests	Challenges	Ebooks
LS 4 Big idea What needs to be measured determines the unit of measurement Topic Length and mass	MA2-GM-02 measures and estimates lengths in metres, centimetres and millimetres MA2-NSM-01 estimates, measures and compares the masses of objects using kilograms and grams MA2-RN-02 represents and compares decimals up to 2 decimal places using place value	Geometric measure B Non-spatial measure B Representing numbers using place value B	- Length: Use scaled instruments to measure and compare lengths - Mass: Use scaled instruments to measure and compare masses - Decimals: Extend the application of the place value system from whole numbers to tenths and hundredths	Coming soon	Geometric measure: length (B) - How Long is That? - Measuring Length - Perimeter of Shapes - Converting cm and mm - Centimetres and Metres Non-spatial measure: mass \& time (B) - How Heavy? - Ordering Mass (g)	Measure length \& perimeter - Measuring in $\mathrm{m}, \mathrm{cm}, \mathrm{mm}$ - Comparing length measurements - Ordering length measurements - Converting between metric lengths - Calculating the perimeter of quadrilaterals Read scaled instruments in $\mathrm{kg} \& \mathrm{~g}$ - Measuring mass in grams - Measuring \& comparing mass in g \& kg	Measurement, Length 2-4 - Robot race DOK 2 - Parking problems 00×3 - Metres or centimetres? ©OK 3 Measurement, Mass 2-4 - Placing pumpkins ©OK2 - Beryl the St Bernard (DOK 3	(T4-D) Length, Area and Perimeter - Perimeter - measuring shapes pp 8-9 - Perimeter-calculating perimeter pp 10-11 - Perimeter - perimeter word problems pp 12-14 r5-E) Length, Perimeter and Area - Units of length $-\mathrm{m}, \mathrm{cm}, \mathrm{mm}$ pp 1-2 - Units of length - metres to kilometres pp 5-6 (r4-D) Volume, Capacity and Mass - Mass - kilograms and grams pp 10-13
LS 5 Big idea Addition and subtraction problems can be solved by using a variety of strategies Topic Addition and subtraction problems	MA2-AR-01 selects and uses mental and written strategies for addition and subtraction involving 2-and 3-digit numbers MA2-AR-02 completes number sentences involving addition and subtraction by finding missing values MA2-RN-01 applies an understanding of place value and the role of zero to represent numbers to at least tens of thousands	Additive relations B Representing numbers using place value B	- Partition, rearrange and regroup numbers to at least 1000 to solve additive problems - Apply addition and subtraction to familiar contexts, including money and budgeting - Complete number sentences involving additive relations to find unknown quantities - Whole numbers: Apply place value to partition, regroup and rename numbers up to 6 digits - Whole numbers: Recognise and represent numbers that are 10,100 or 1000 times as large	Coming soon	Additive relations (B) - Pyramid Puzzles 1 - Pyramid Puzzles 2 - Pyramid Puzzles 3 - Pyramid Puzzles 4 - Missing Numbers - Missing Values	Addition \& subtraction to 4 digits - Adding \& subtracting money	Number \& Algebra, Money 2-4 - Bike for sale ©OK3 - Fruit salad ©OK3	(Y5-E) Fractions, Decimals and Percentages - Calculating - adding decimal fractions p 31 (r5-E) Adding and Subtracting - Written methods - adding and subtracting decimals p 22 - Written methods - word problems p 23

LS \& Topic	Outcomes	Focus	Content	New Courses	Activities (courses)	Skill Quests	Challenges	Ebooks
LS 1 Big idea The number system extends infinitely to very large and very small numbers Topic Number review	MA2-RN-01 applies an understanding of place value and the role of zero to represent numbers ... MA2-RN-02 represents and compares decimals up to 2 decimal places using place value MA2-AR-01 selects and uses mental and written strategies for addition and subtraction involving 2 - and 3 -digit numbers	Representing numbers using place value B Additive relations B	- Whole numbers: Order numbers in the thousands - Whole numbers: Apply place value to partition, regroup and rename numbers up to 6 digits - Whole numbers: Recognise and represent numbers that are 10,100 or 1000 times as large - Decimals: Extend the application of the place value system from whole numbers to tenths and hundredths - Decimals: Make connections between fractions and decimal notation - Partition, rearrange and regroup numbers to at least 1000 to solve additive problems	Coming soon	Refer to: - Term 1, Learning Sequence 1 - Term 2, Learning Sequence 1 - Term 3, Learning Sequence 1			
LS 2 Big idea Fractions represent multiple ideas and can be represented in different ways Topic Fractions applications	MA2-PF-01 represents and compares halves, quarters, thirds and fifths as lengths on a number line ... MA2-RN-02 represents and compares decimals up to 2 decimal places using place value MA2-GM-02 measures and estimates lengths in metres, centimetres and millimetres	Partitioned fractions B Representing numbers using place value B Geometric measure B	- Model equivalent fractions as lengths - Represent fractional quantities equal to and greater than one - Decimals: Make connections between fractions and decimal notation - Length: Use scaled instruments to measure and compare lengths	Y4 Partitioned Fractions - Counting by fractions - Mixed numbers to improper fractions - Improper fractions to mixed numbers			Number \& Algebra, Fractions 2-4 - The grasshoppers who jumped a fraction (0OK2) - How many hats and socks (DOK 2 - How many scarves and hats ©OK2	Y5-E Fractions, Decimals and Percentages - Calculating - adding and subtracting fractions with like denominators pp 26-29
LS 3 Big idea Questions can be asked and answered by collecting and interpreting data Topic Chance	MA2-CHAN-01 records and compares the results of chance experiments MA2-DATA-01 collects discrete data and constructs graphs using a given scale MA2-DATA-02 interprets data in tables, dot plots and column graphs	Chance B Data B	- Describe the likelihood of outcomes of chance events - Identify when events are affected by previous events - Select and trial methods for data collection - Construct and interpret data displays with many-to-one scales	Coming soon	Chance (B) - Introductory probability - Chance Gauge - What are the Chances?	Describe the likelihood of outcomes - Using the language of probability - Identifying events affected by previous events	Chance \& Probability 3-5 - Roll of the dice (DOK4)	(Y4-D) Chance and Data - Chance - ordering events pp 1-2 - Chance - probability pp 3-5 - Chance - fair and unfair p 6 - Chance - coin investigation p 7 - Chance - two dice investigation pp 8-9

