Mathletics US Common Core

Skill Quests

Grades 7 - 8

May, 2022

Mathletics US Common Core Skill Quests

May 2022

Grade 7	4
1 Ratios & Proportional Relationships	4
1.1 Analyze proportional relationships and use them to solve real-world and mathematical problems	4
2 The Number System	5
2.1 Apply and extend previous understandings of operations with fractions	5
3 Expressions & Equations	7
3.1 Use properties of operations to generate equivalent expressions	7
3.2 Solve real-life and mathematical problems using numerical and algebraic expressions and equations	7
4 Geometry	9
4.1 Draw construct, and describe geometrical figures and describe the relationships between them	9
4.2 Solve real-life and mathematical problems involving angle measure, area, surface area, and volume	
5 Statistics & Probability	. 11
5.1 Use random sampling to draw inferences about a population	. 11
5.2 Draw informal comparative inferences about two populations	. 11
5.3 Investigate chance processes and develop, use, and evaluate probability models.	. 12
Grade 8	.13
1 The Number System	. 13
1.1 Know that there are numbers that are not rational, and approximate them by rational numbers	. 13
2 Expressions & Equations	. 14
2.1 Work with radicals and integer exponents	. 14
2.2 Understand the connections between proportional relationships, lines, and linear equations	. 15
2.3 Analyze and solve linear equations and pairs of simultaneous linear equations	. 15
3 Functions	. 17
3.1 Define, evaluate, and compare functions	. 17
3.2 Use functions to model relationships between quantities	. 17
4 Geometry	. 19
4.1 Understand congruence and similarity using physical models, transparencies, or geometry software	. 19

	4.2 Understand and apply the Pythagorean Theorem	. 20
	4.3 Solve real-world and mathematical problems involving volume of cylinders, cones	;,
	and spheres	. 20
5	Statistics & Probability	. 21
	5.1 Investigate patterns of association in bivariate data	. 21

Grade 7

1 Ratios & Proportional Relationships

1.1 Analyze proportional relationships and use them to solve real-world and mathematical problems

Outcome	Quests	Content
1. Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units.	Unit rates with fractions	Solving unit rate problems involving fractions
2. Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin.	Identify proportional relationships	Identifying proportional relationships
3. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.	Constant of proportionality	Identifying the constant of proportionality
4. Represent proportional relationships by equations.	Represent proportional relationships	Representing proportional relationships: equations
5. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points (0, 0) and (1, r) where r is the unit rate.	Graphs of proportional relationships	Interpreting graphs of proportional relationships
6. Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error.	Ratio & percent problems	Solving multi-step ratio & percent problems

2 The Number System

2.1 Apply and extend previous understandings of operations with fractions

Outcome	Quests	Content
1. Describe situations in which opposite quantities combine to make 0.	Opposites	Describing situations involving opposites
2. Understand p + q as the number located a distance q from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by	Add rational numbers	Opposites & absolute value Adding rational numbers Adding positive & negative fractions Adding positive & negative decimals
describing real-world contexts. 3. Understand subtraction of rational numbers as adding the additive inverse, p - q = p + (-q). Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts.	Subtract rational numbers	Subtracting rational numbers: adding the inverse Subtracting positive & negative fractions Subtracting positive & negative decimals Subtracting integers Subtracting rational numbers: absolute value
4. Apply properties of operations as strategies to add and subtract rational numbers.	Rational numbers: addition properties	Add & subtract rational numbers: properties
5. Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as (-1)(-1) = 1 and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.	Multiply rational numbers	Multiplying rational numbers Multiplying positive & negative fractions Multiplying positive & negative decimals Multiplying integers Products of rational numbers: real-world contexts
6. Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then -(p/q) = (-p)/q = p/(-q). Interpret quotients of rational	Divide integers	Dividing integers Quotients of rational numbers: real-world contexts

numbers by describing real-world contexts.		
7. Apply properties of operations as strategies to multiply and divide rational numbers.	Rational numbers: properties	Multiply & divide rational numbers: properties
8. Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0s or eventually repeats.	Convert rational numbers to decimals	Use long division to convert rationals to decimals
9. Solve real-world and mathematical problems involving the four operations with rational numbers.	Rational numbers problems: 4 operations	Rational numbers problems: 4 operations

3 Expressions & Equations

3.1 Use properties of operations to generate equivalent expressions

Outcome	Quests	Content
1. Apply properties of operations as	Linear expressions:	Simplify algebraic expressions:
strategies to add, subtract, factor,	properties	add & subtract
and expand linear expressions with		Distributive property: algebraic
rational coefficients.		expressions
		Factoring algebraic
		expressions
2. Understand that rewriting an	Interpret expressions	Rearranging expressions to
expression in different forms in a		interpret quantities
problem context can shed light on		
the problem and how the quantities		
in it are related.		

3.2 Solve real-life and mathematical problems using numerical and algebraic expressions and equations

Outcome	Quests	Content
3. Solve multi-step real-life and mathematical problems posed with	Problems with rational numbers	Solving problems with rational numbers
positive and negative rational		Converting terminating
numbers in any form (whole numbers, fractions, and decimals),		decimals
using tools strategically. Apply		
properties of operations to calculate with numbers in any form; convert		
between forms as appropriate; and		
assess the reasonableness of answers using mental computation		
and estimation strategies.		
4. Solve word problems leading to equations of the form $px + q = r$ and	Solve 2-step equations	Solving 2-step equations: word problems
p(x + q) = r, where p, q, and r are specific rational numbers. Solve		2-step equations, positive integer coefficients
equations of these forms fluently. Compare an algebraic solution to		2-step equations, integer coefficients
an arithmetic solution, identifying the sequence of the operations		2-step equations, positive rational coefficients
used in each approach.		2-step equations, rational coefficients

		2-step equations, distributive property
5. Solve word problems leading to	Solve 2-step	Creating & solving 2-step
inequalities of the form $px + q > r$ or	inequalities	inequalities
px + q < r, where p, q, and r are		Representing inequalities
specific rational numbers. Graph		Graphing the solution of an
the solution set of the inequality		inequality
and interpret it in the context of the		Solving 2-step inequalities
problem.		

4 Geometry

4.1 Draw construct, and describe geometrical figures and describe the relationships between them

Outcome	Quests	Content
1. Solve problems involving scale	Scale drawings	Scale drawings
drawings of geometric figures,		
including computing actual lengths		
and areas from a scale drawing		
and reproducing a scale drawing at		
a different scale.		T
2. Draw (freehand, with ruler and	Construct triangles	Triangle Inequality Theorem
protractor, and with technology)		Constructing triangles with
geometric shapes with given		given conditions
conditions. Focus on constructing		
triangles from three measures of		
angles or sides, noticing when the		
conditions determine a unique		
triangle, more than one triangle, or		
no triangle.	Cross sections of 2 D	Describing areas as tions of 2
3. Describe the two-dimensional	Cross sections of 3-D	Describing cross sections of 3-
figures that result from slicing	figures	D figures
three-dimensional figures, as in		
plane sections of right rectangular		
prisms and right rectangular		
pyramids.		

4.2 Solve real-life and mathematical problems involving angle measure, area, surface area, and volume

Outcome	Quests	Content
4. Know the formulas for the area	Circles: area &	Finding the area of a circle
and circumference of a circle and	circumference	Introducing the parts of a
use them to solve problems; give an		circle
informal derivation of the		Finding the circumference of a
relationship between the		circle
circumference and area of a circle.		
5. Use facts about supplementary,	Using angle facts to	Supplementary angles
complementary, vertical, and	solve problems	Complementary angles
adjacent angles in a multi-step		Adjacent angles
problem to write and solve simple		Vertical angles
equations for an unknown angle in		
a figure.		

6. Solve real-world and	Area, volume & surface	Area: polygons
mathematical problems involving	area	Solving real-life problems:
area, volume and surface area of		area of polygons
two- and three-dimensional objects		Volume: right prisms
composed of triangles,		Surface area: rectangular &
quadrilaterals, polygons, cubes, and		triangular prisms
right prisms.		

5 Statistics & Probability

5.1 Use random sampling to draw inferences about a population

Outcome	Quests	Content
1. Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.	Understand sampling	Understanding sampling
2. Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions.	Draw inferences from samples	Drawing inferences from samples

5.2 Draw informal comparative inferences about two populations

Outcome	Quests	Content
3. Informally assess the degree of	Compare data	Comparing data distributions
visual overlap of two numerical	distributions	
data distributions with similar		
variabilities, measuring the		
difference between the centers by		
expressing it as a multiple of a		
measure of variability.		
4. Use measures of center and	Draw comparative	Drawing comparative
measures of variability for	inferences	inferences
numerical data from random		
samples to draw informal		
comparative inferences about two		
populations.		

5.3 Investigate chance processes and develop, use, and evaluate probability models

Outcome	Quests	Content
5. Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around 1/2 indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.	Introduction to probability	Introducing probability
6. Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability.	Probability of chance events	Probability of chance events: relative frequency
7. Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events.	Determine the probability of events	Theoretical probability Predicting outcomes of chance experiments Finding the complement of an event
8. Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process.	Observe frequencies in data	Finding the approximate probability Comparing observed frequency & expected frequency
9. Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs.	Probability: compound events	Investigating mutually exclusive events Calculating probabilities of compound events
10. Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., "rolling double sixes"), identify the outcomes in the sample space which compose the event.	Sample spaces for compound events	Representing sample spaces & identifying outcomes
11. Design and use a simulation to generate frequencies for compound events.	Independent & dependent compound events	Independent & dependent compound events

Grade 8

1 The Number System

1.1 Know that there are numbers that are not rational, and approximate them by rational numbers

Outcome	Quests	Content
1. Know that numbers that are not	Rational & irrational	Describing properties of
rational are called irrational.	numbers	irrational numbers
Understand informally that every		Classifying real numbers
number has a decimal expansion;		Converting repeating decimals
for rational numbers show that the		to rational numbers
decimal expansion repeats		Repeating & terminating
eventually, and convert a decimal		decimals as fractions
expansion which repeats eventually		
into a rational number.		
2. Use rational approximations of	Approximate irrational	Comparing irrational numbers
irrational numbers to compare the	numbers	Locating irrational numbers on
size of irrational numbers, locate		a number line
them approximately on a number		Approximating the value of an
line diagram, and estimate the		irrational number
value of expressions (e.g., π ^2).		Finding square roots of non-
		perfect squares

2 Expressions & Equations

2.1 Work with radicals and integer exponents

Outcome	Quests	Content
1. Know and apply the properties of	Properties of integer	Using exponent notation
integer exponents to generate	exponents	Product of powers, numerical
equivalent numerical expressions.		base
		Product of powers, algebraic
		base
		Quotient of powers, numerical
		base
		Quotient of powers, algebraic
		base
		Power of a power, numerical
		base
		Power of a power, algebraic
		base
		Zero exponents, numerical
		base
		Zero exponents, algebraic
		base
		Negative exponents, numerical
		base
		Negative exponents, algebraic
		base
		Simplifying expressions,
		numerical base
		Simplifying expressions,
		algebraic base
2. Use square root and cube root	Square & cube roots	Investigating square roots &
symbols to represent solutions to		cube roots
equations of the form $x^2 = p$ and x^3		Squares & square roots
= p, where p is a positive rational		Evaluating expressions with
number. Evaluate square roots of		square & cube roots
small perfect squares and cube		Square roots of fractions &
roots of small perfect cubes. Know		decimals
that √2 is irrational.		Cubes & cube roots
3. Use numbers expressed in the	Write numbers in	Introducing scientific notation
form of a single digit times an	scientific notation	Converting scientific notation
integer power of 10 to estimate		to standard form
very large or very small quantities,		Converting standard form to
and to express how many times as		scientific notation
much one is than the other.		
4. Perform operations with numbers	Calculations in	Calculations in scientific
expressed in scientific notation,	scientific notation	notation
including problems where both		

decimal and scientific notation are	
used. Use scientific notation and	
choose units of appropriate size for	
measurements of very large or very	
small quantities (e.g., use	
millimeters per year for seafloor	
spreading). Interpret scientific	
notation that has been generated	
by technology	

2.2 Understand the connections between proportional relationships, lines, and linear equations

Outcome	Quests	Content
5. Graph proportional relationships,	Proportional	Graphing proportional
interpreting the unit rate as the	relationships	relationships
slope of the graph. Compare two		Comparing proportional
different proportional relationships		relationships
represented in different ways.		
6. Use similar triangles to explain	Understand slope & y-	Using similar triangles to
why the slope m is the same	intercept	understand slope
between any two distinct points on		Writing equations of
a non-vertical line in the coordinate		proportional relationships
plane; derive the equation y = mx		Writing equations of
for a line through the origin and the		nonproportional relationships
equation $y = mx + b$ for a line		Identifying the slope in an
intercepting the vertical axis at b.		equation or graph
		Identifying the y-intercept on a
		graph
		Graphing equations in slope-
		intercept form
		Graphing equations not in
		slope-intercept form
		Finding the y-intercept
		algebraically

2.3 Analyze and solve linear equations and pairs of simultaneous linear equations

Outcome	Quests	Content
7. Give examples of linear	Solution types of linear	Solution types of linear
equations in one variable with one	equations	equations
solution, infinitely many solutions,		
or no solutions. Show which of		
these possibilities is the case by		
successively transforming the given		

equation into simpler forms, until an equivalent equation of the form $x = a$, $a = a$, or $a = b$ results (where a		
and b are different numbers).		
8. Solve linear equations with rational number coefficients,	Solve linear equations	Solving 3-step linear equations
including equations whose solutions require expanding		Solving linear equations, variables on both sides
expressions using the distributive property and collecting like terms.		Solving linear equations, distributive property
		Using substitution to check solutions
9. Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.	Identify solutions, systems of equations	Identifying solutions, systems of equations
10. Solve systems of two linear equations in two variables	Solve systems of equations	Solving systems of equations graphically
algebraically, and estimate solutions by graphing the		Solving systems of equations using elimination
equations. Solve simple cases by inspection.		Solving systems of equations using substitution
		Checking the solution of a system of equations
11. Solve real-world and mathematical problems leading to two linear equations in two variables.	Write & solve systems of equations	Writing & solving systems of equations

3 Functions

3.1 Define, evaluate, and compare functions

Outcome	Quests	Content
Understand that a function is a rule that assigns to each input	Identify functions	ldentifying functions
exactly one output. The graph of a		
function is the set of ordered pairs		
consisting of an input and the corresponding output.		
2. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).	Compare functions	Comparing functions represented in different ways
3. Interpret the equation $y = mx + b$ as defining a linear function, whose	Interpret y = mx + b as linear	Represent linear relationships in different forms
graph is a straight line; give examples of functions that are not		Equations of linear & non- linear relationships
linear.		illieur reiuuorisilips

3.2 Use functions to model relationships between quantities

Outcome	Quests	Content
4. Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.	Rate of change & initial value	Rate of change & initial value
5. Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a	Distance-time graphs	Distance-time graphs

function that has been described	
verbally.	

4 Geometry

4.1 Understand congruence and similarity using physical models, transparencies, or geometry software

Outcome	Quests	Content
1. Verify experimentally the properties of rotations, reflections, and translations.	Introduction to rigid transformations	Translating points on the coordinate plane Reflecting points across the x-or y-axis Rotating points about the origin
1. Lines are taken to lines, and line segments to line segments of the same length.	Preserved properties: length	Preserved properties: length
2. Angles are taken to angles of the same measure.	Preserved properties: angles	Preserved properties: angles
3. Parallel lines are taken to parallel lines.	Preserved properties: parallel lines	Preserved properties: parallel lines
4. Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.	Congruency: rigid transformations	Congruency: rigid transformations
5. Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.	Transformations, coordinates	Dilations, coordinates Translations, coordinates Rotations, coordinates Reflections, coordinates Sequences of transformations
6. Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.	Similarity: transformations	Introducing similarity Similarity: transformations
7. Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when	Triangles & angle relationships	Angle sum theorem Exterior angle theorem Angle relationships: parallel lines, transversal

parallel lines are cut by a	Using scale to analyze similar
transversal, and the angle-angle	triangles
criterion for similarity of triangles.	Identifying similar triangles

4.2 Understand and apply the Pythagorean Theorem

Outcome	Quests	Content
6. Explain a proof of the	The Pythagorean	Identifying the hypotenuse,
Pythagorean Theorem and its	Theorem & its converse	right triangles
converse.		Identifying right triangles,
		Pythagorean Theorem
		Pythagorean triples
7. Apply the Pythagorean Theorem	Apply the Pythagorean	Pythagorean Theorem:
to determine unknown side lengths	Theorem	missing short side
in right triangles in real-world and		Pythagorean Theorem:
mathematical problems in two and		missing hypotenuse
three dimensions.		Pythagorean Theorem:
		missing side
		Pythagorean Theorem in 2-D
		& 3-D
8. Apply the Pythagorean Theorem	Distance between two	Finding the distance between
to find the distance between two	points	two points
points in a coordinate system.		

4.3 Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres

Outcome	Quests	Content
9. Know the formulas for the	Volume: cones,	Volume: cones
volumes of cones, cylinders, and	cylinders & spheres	Volume: cylinders
spheres and use them to solve real-		Volume: spheres
world and mathematical problems.		

5 Statistics & Probability

5.1 Investigate patterns of association in bivariate data

Outcome	Quests	Content
1. Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.	Use & interpret scatter plots	Using & interpreting scatter plots
2. Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.	Estimate the line of best fit	Estimating the line of best fit
3. Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept.	Interpret the line of best fit	Interpreting the line of best fit
4. Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables.	Two-way tables	Constructing & interpreting two-way tables

For more information about Mathletics, contact our friendly team.

www.mathletics.com/contact

