Mathletics

Georgia Program of Studies

 Skill Quests

Grades 7-8
January, 2023

Mathletics
Georgia Program of Studies
Skill Quests
January 2023
Grade 7 4
1 Ratios and Proportional Relationships 4
1.1 Analyze proportional relationships and use them to solve real-world and mathematical problems 4
2 The Number System 5
2.1 Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers 5
3 Expressions and Equations 7
3.1 Use properties of operations to generate equivalent expressions 7
3.2 Solve real-life and mathematical problems using numerical and algebraic expressions and equations 7
4 Geometry 9
4.1 Draw, construct, and describe geometrical figures and describe the relationships between them 9
4.2 Solve real-life and mathematical problems involving angle measure, area, surface area, and volume 9
5 Statistics and Probability 11
5.1 Use random sampling to draw inferences about a population 11
5.2 Draw informal comparative inferences about two populations 11
5.3 Investigate chance processes and develop, use, and evaluate probability models. 12
Grade 8 13
1 The Number System 13
1.1 Know that there are numbers that are not rational, and approximate them by rational numbers 13
2 Expressions and Equations. 14
2.1 Work with radicals and integer exponents 14
2.2 Understand the connections between proportional relationships, lines, and linear equations 15
2.3 Analyze and solve linear equations and pairs of simultaneous linear equations. 15
3 Functions 17
3.1 Define, evaluate, and compare functions 17
3.2 Use functions to model relationships between quantities 17
4 Geometry 19
4.1 Understand congruence and similarity using physical models, transparencies, or geometry software 19
4.2 Understand and apply the Pythagorean Theorem 20
4.3 Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres 20
5 Statistics and Probability 21
5.1 Investigate patterns of association in bivariate data 21

Grade 7

1 Ratios and Proportional Relationships

1.1 Analyze proportional relationships and use them to solve real-world and mathematical problems

Outcome	Quests	Content
Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units.	Unit rates with fractions	Solving unit rate problems involving fractions
Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin.	Identify proportional relationships	Identifying proportional relationships
Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.	Constant of proportionality	Identifying the constant of proportionality
Represent proportional relationships by equations.	Represent proportional relationships	Representing proportional relationships: equations
Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points (0, 0) and (1, r) where r is the unit rate.	Graphs of proportional relationships	Interpreting graphs of proportional relationships
Use proportional relationships to solve multistep ratio and percent problems.	Ratio \& percent problems	 percent problems

2 The Number System

2.1 Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers

Outcome	Quests	Content	
Show that a number and its opposite have a sum of 0 (are additive inverses). Describe situations in which opposite quantities combine to make 0 .	Opposites	Describing situations involving opposites	
Understand $p+q$ as the number located a distance \|q	from p, in the positive or negative direction depending on whether q is positive or negative. Interpret sums of rational numbers by describing real world contexts.	Add rational numbers	Opposites \& absolute value
		Adding rational numbers	
		Adding positive \& negative fractions	
		Adding positive \& negative decimals	
		Adding integers	
Understand subtraction of rational numbers as adding the additive inverse, $p-q=p+(-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in realworld contexts.	Subtract rational numbers	Subtracting rational numbers: adding the inverse	
		Subtracting positive \& negative fractions	
		Subtracting positive \& negative decimals	
		Subtracting integers	
		Subtracting rational numbers: absolute value	
Apply properties of operations as strategies to add and subtract rational numbers.	Rational numbers: addition properties	Adding \& subtracting rational numbers: properties	
Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1)=1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.	Multiply rational numbers	Multiplying rational numbers	
		Multiplying positive \& negative fractions	
		Multiplying positive \& negative decimals	
		Multiplying integers	
		Products of rational numbers: real-world contexts	
Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are	Divide integers	Dividing integers	
		Quotients of rational numbers: real-world contexts	

integers then $-(\mathrm{p} / \mathrm{q})=(-\mathrm{p}) / \mathrm{q}=$ $\mathrm{p} /(-\mathrm{q})$. Interpret quotients of rational numbers by describing real-world contexts.		
Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in Os or eventually repeats.	Convert rational numbers to decimals	Use long division to convert rationals to decimals
Solve real-world and mathematical problems involving the four operations with rational numbers.	Rational numbers problems: 4 operations	Rational numbers problems: 4 operations

3 Expressions and Equations

3.1 Use properties of operations to generate equivalent expressions

Outcome	Quests	Content
Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.	Linear expressions: properties	Simplifying algebraic expressions: add \& subtract
	Distributive property: algebraic expressions	
Factoring algebraic expressions		
Understand that rewriting an expression in different forms in a problem context can clarify the problem and how the quantities in it are related.	Interpret expressions	Rearranging expressions to interpret quantities

3.2 Solve real-life and mathematical problems using numerical and algebraic expressions and equations

Outcome	Quests	Content
Solve multistep real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals) by applying properties of operations as strategies to calculate with numbers, converting between forms as appropriate, and assessing the reasonableness of answers using mental computation and estimation strategies.	Problems with rational numbers	Solving problems with rational numbers
Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach.	Solve 2-step equations	Solving 2-step equations: word problems
		2-step equations, positive integer coefficients
		2-step equations, integer coefficients
		2-step equations, positive rational coefficients
		2-step equations, rational coefficients

		2-step equations, distributive property
Solve word problems leading to inequalities of the form $p x+q>r$ or $p x+q<r$, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem.	Solve 2-step inequalities	Creating \& solving 2-step inequalities
		Representing inequalities Graphing the solution of an inequality
		Solving 2-step inequalities

4 Geometry

4.1 Draw, construct, and describe geometrical figures and describe the relationships between them

Outcome	Quests	Content
Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.	Scale drawings	Scale drawings
Explore various geometric shapes with given conditions. Focus on creating triangles from three measures of angles and/or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.	Construct triangles	Triangle inequality theorem
Describe the two-dimensional figures (cross sections) that result from slicing threedimensional figures, as in plane sections of right rectangular prisms, right rectangular pyramids, cones, cylinders, and spheres.	Cross sections of 3-D figures	given conditions

4.2 Solve real-life and mathematical problems involving angle measure, area, surface area, and volume

Outcome	Quests	Content
Given the formulas for the area and circumference of a circle, use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.	 circumference	Finding the area of a circle circle
		Finding the circumference of a circle
Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure.	Use angle facts to solve problems	Supplementary angles
		Complementary angles
		Adjacent angles
	Vertical angles	

$\left.$| Solve real-world and mathematical
 problems involving area, volume
 and surface area of two- and three-
 dimensional objects composed of
 triangles, quadrilaterals, polygons,
 cubes, and right prisms. | | Area, volume \& surface |
| :--- | :--- | :--- |
| area | | |\quad| Solving real-life problems: |
| :--- |
| area of polygons | \right\rvert\, | Volume:right prisms | |
| :--- | :--- |
| | |

5 Statistics and Probability

5.1 Use random sampling to draw inferences about a population

Outcome	Quests	Content
Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.		Understand sampling

5.2 Draw informal comparative inferences about two populations

Outcome	Quests	Content
Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the medians by expressing it as a multiple of the interquartile range.	Compare data distributions	Comparing data distributions
Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations.	Draw comparative inferences	Drawing comparative inferences

5.3 Investigate chance processes and develop, use, and evaluate probability models

Outcome	Quests	Content
Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.	Introduction to probability	Introducing probability
Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency. Predict the approximate relative frequency given the probability.	Probability of chance events	Probability of chance events: relative frequency
Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events.	Determine the probability of events	Theoretical probability
		Predicting outcomes of chance experiments
		Finding the complement of an event
Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process.	Observe frequencies in data	Finding the approximate probability
		Comparing observed frequency \& expected frequency
Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs.	Probability: compound events	Investigating mutually exclusive events
		Calculating probabilities of compound events
Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., "rolling double sixes"), identify the outcomes in the sample space which compose the event.	Sample spaces for compound events	Representing sample spaces \& identifying outcomes
Explain ways to set up a simulation and use the simulation to generate frequencies for compound events.	Independent \& dependent compound events	Independent \& dependent compound events

Grade 8

1 The Number System

1.1 Know that there are numbers that are not rational, and approximate them by rational numbers

Outcome	Quests	Content
Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.	Rational \& irrational numbers	Describing properties of irrational numbers
		Classifying real numbers
		Converting repeating decimals to rational numbers
		Repeating \& terminating decimals as fractions
Use rational approximation of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line, and estimate the value of expressions (e.g., estimate $\pi 2$ to the nearest tenth).	Approximate irrational numbers	Comparing irrational numbers
		Locating irrational numbers on a number line
		Approximating the value of an irrational number
		Finding square roots of nonperfect squares

2 Expressions and Equations

2.1 Work with radicals and integer exponents

Outcome	Quests	
Know and apply the properties of integer exponents to generate equivalent numerical expressions.	Properties of integer exponents	Using exponent notation
Product of powers, numerical base		
	Product of powers, algebraic base	

Add, subtract, multiply and divide	Calculations in	Calculations in scientific		
numbers expressed in scientific				
notation, including problems where				
scientific notation				
botation decimal and scientific notation				
are used. Understand scientific			\quad	notation and choose units of
:---				
appropriate size for measurements				
of very large or very small				
quantities (e.g. use millimeters per				
year for seafloor spreading).				

2.2 Understand the connections between proportional relationships, lines, and linear equations

Outcome	Quests	Content
Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways.	Proportional relationships	Graphing proportional relationships
		Comparing proportional relationships
Use similar triangles to explain why the slope m is the same between any two distinct points on a nonvertical line in the coordinate plane; derive the equation $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b.	Understand slope \& yintercept	Using similar triangles to understand slope
		Writing equations of proportional relationships
		Writing equations of nonproportional relationships
		Identifying the slope in an equation or graph
		Identifying the y-intercept on a graph
		Graphing equations in slopeintercept form
		Graphing equations not in slope-intercept form
		Finding the y-intercept algebraically

2.3 Analyze and solve linear equations and pairs of simultaneous linear equations

Outcome	Quests	Content
Give examples of linear equations in one variable with one solution,	Solution types of linear equations	Solution types of linear equations

infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x=$ $a, a=a$, or $a=b$ results (where a and b are different numbers).		
Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.	Solve linear equations	Solving 3-step linear equations
		Solving linear equations, variables on both sides
		Solving linear equations, distributive property
		Using substitution to check solutions
Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.	Identify solutions, systems of equations	Identifying solutions, systems of equations
Solve systems of two linear equations in two variables	Solve systems of equations	Solving systems of equations graphically
algebraically, and estimate solutions by graphing the		Solving systems of equations using elimination
equations. Solve simple cases by inspection.		Solving systems of equations using substitution
		Checking the solution of a system of equations
Solve real-world and mathematical problems leading to two linear equations in two variables.	Write \& solve systems of equations	Writing \& solving systems of equations

3 Functions

3.1 Define, evaluate, and compare functions

Outcome	Quests	Content
Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.	Identify functions	Identifying functions
Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).	Compare functions	Comparing functions represented in different ways
Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear.	Interpret $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ as linear	Represent linear relationships in different forms
		Equations of linear \& non- linear relationships

3.2 Use functions to model relationships between quantities

Outcome	Quests	Content
Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.	Rate of change \& initial value	
Rescribe qualitatively the functional change \& initial value relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the	Distance-time graphs	Distance-time graphs

qualitative features of a function
that has been described verbally.

4 Geometry

4.1 Understand congruence and similarity using physical models, transparencies, or geometry software

Outcome	Quests	Content
Verify experimentally the congruence properties of rotations, reflections, and translations: lines are taken to lines and line segments to line segments of the same length; angles are taken to angles of the same measure; parallel lines are taken to parallel lines.	Introduction to rigid transformations	Translating points on the coordinate plane

4.2 Understand and apply the Pythagorean Theorem

Outcome	Quests	Content			
Explain a proof of the Pythagorean Theorem and its converse.	The Pythagorean theorem \& its converse	Identifying the hypotenuse, right triangles			
	Identifying right triangles, Pythagorean theorem				
	Pythagorean triples		$	$	Apply the Pythagorean Theorem to
:---					
determine unknown side lengths in					
right triangles in real-world and					
mathematical problems in two and					
three dimensions.	Apply the Pythagorean	theorem			
:---					
short side					

4.3 Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres

Outcome	Quests	Content		
Apply the formulas for the volume of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.	Volume: cones, cylinders \& spheres			Volume: cones
:---				

5 Statistics and Probability

5.1 Investigate patterns of association in bivariate data

Outcome	Quests	Content
Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.	Use \& interpret scatter plots	Using \& interpreting scatter plots
Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.	Estimate the line of best fit	Estimating the line of best fit
Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept.	Interpret the line of best fit	Interpreting the line of best fit
Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects.	Two-way tables	Constructing \& interpreting two-way tables

Mathletics

For more information about Mathletics, contact our friendly team.

www.mathletics.com/contact

