Mathletics Illinois Program of Studies

 Skill Quests

Grades 3-6
Mathletics
July, 2022

Mathletics
Illinois Program of Studies
Skill Quests
July 2022
Grade 3 3
1 Operations and Algebraic Thinking 3
2 Number and Operations in Base 10 5
3 Number and Operations - Fractions 6
4 Measurements and Data 8
5 Geometry 10
Grade 4 11
1 Operations and Algebraic Thinking 11
2 Number and Operations in Base 10 12
3 Number and Operations - Fractions 14
4 Measurements and Data 16
5 Geometry 18
Grade 5 19
1 Operations and Algebraic Thinking 19
2 Number and Operations in Base 10 20
3 Number and Operations - Fractions 22
4 Measurement and Data 24
5 Geometry 26
Grade 6 27
1 Ratios and Proportional Relationships 27
2 Number System 28
3 Expressions and Equations 31
4 Geometry 34
5 Statistics and Probability 36

Grade 3

1 Operations and Algebraic Thinking

Outcome	Quests	Content
CC.3.OA. 1 Represent and solve problems involving multiplication and division. Interpret products of whole numbers.	Introduction to multiplication	Multiplying using arrays \& repeated addition
CC.3.OA. 2 Represent and solve problems involving multiplication and division. Interpret wholenumber quotients of whole numbers.	Introduction to division	Dividing by sharing (up to 50)
		Dividing by grouping (up to 50)
		Create \& solve problems involving equal groups
		Using repeated subtraction to divide
CC.3.OA. 3 Represent and solve problems involving multiplication and division. Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities.	Multiplication \& division problems	Multiplication problems: fair share/equal grouping
		Multiplication/division problems: arrays
CC.3.OA. 4 Represent and solve problems involving multiplication and division. Determine the unknown whole number in a multiplication or division equation relating three whole numbers.	Multiply \& divide: finding the unknown	Multiplying \& dividing: finding the unknown
CC.3.OA. 5 Understand properties of multiplication and the relationship between multiplication and division. Apply properties of operations as strategies to multiply and divide.	Multiplication properties	Multiplication properties
CC.3.OA. 6 Understand properties of multiplication and the relationship between multiplication and division. Understand division as an unknown-factor problem.	Division: unknownfactor problems	Understand division as an unknown-factor problem
CC.3.OA. 7 Multiply and divide within 100 . Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division or properties of operations. By the end	Multiplication \& division facts	Multiplication facts: 2, 4, 8
		Multiplication facts: 5,10
		Multiplication facts: 3, 6, 9
		Multiplication facts: 7
		Recalling multiplication facts to 5×5

of Grade 3, know from memory all products of one-digit numbers.		Recalling multiplication facts to 10×10
		Division facts: 2, 4, 8
		Division facts: 5,10
		Division facts: 3, 6, 9
		Division facts: 7
CC.3.OA. 8 Solve problems involving the four operations, and identify and explain patterns in arithmetic. Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.	2-step word problems: 4 operations	2-step word problems with addition \& subtraction
		2-step word problems with the 4 operations
CC.3.OA. 9 Solve problems involving the four operations, and identify and explain patterns in arithmetic. Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations.	Number patterns	Identifying \& creating number patterns
		Identifying odd \& even number patterns
		Exploring number patterns in tables \& charts

2 Number and Operations in Base 10

Outcome	Quests	Content
CC.3.NBT. 1 Use place value understanding and properties of operations to perform multi-digit arithmetic. Use place value understanding to round whole numbers to the nearest 10 or 100 .	Round to the nearest$10 \text { or } 100$	Rounding numbers up to 1000 to the nearest 100
		Rounding numbers up to 1000 to the nearest 10
CC.3.NBT. 2 Use place value understanding and properties of operations to perform multi-digit arithmetic. Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.	Add within 1000	Add 2- \& 3-digit numbers: number line
		Add 2- \& 3-digit numbers: jump strategy
		Add two 2-digit numbers: base ten blocks
		Add 2- \& 3-digit numbers: expanded form
		Add two 2-digit numbers: compensation
	Subtract within 1000	Subtract 2-digit from 3-digit: number line
		Subtract 2-digit from 3-digit: jump strategy
		Subtract two 2-digit numbers: base ten blocks
		Subtract 2-digit from 3-digit: expanded form
		Subtract two 2-digit numbers: compensation
	Add \& subtract within 1000	Add \& subtract up to 3-digits: number line
		Add \& subtract up to 3-digits: jump strategy
		Add \& subtract two 2-digits: place value blocks
		Add \& subtract up to 3-digits: expanded form
		Add \& subtract two 2-digits: compensation
CC.3.NBT. 3 Use place value understanding and properties of operations to perform multi-digit arithmetic. Multiply one-digit whole numbers by multiples of 10 in the range 10-90 using strategies based on place value and properties of operations.	Multiply by a multiple of 10	Multiplying by a multiple of 10

3 Number and Operations - Fractions

Outcome	Quests	Content
CC.3.NF. 1 Develop understanding of fractions as numbers. Understand a fraction $1 / b$ as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a / b as the quantity formed by a parts of size $1 / b$.	Introduction to fractions	Introducing the numerator \& denominator
		Introducing eighths
		Halves, quarters \& eighths of objects or shapes
		Halves, thirds or quarters of shapes: partitioning
		Introducing sixths
		Thirds \& sixths of objects, shapes \& sets
CC.3.NF.2a Represent a fraction 1/b on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts. Recognize that each part has size $1 / b$ and that the endpoint of the part based at 0 locates the number $1 / b$ on the number line.	Locate unit fractions on a number line	Locating unit fractions on a number line
CC.3.NF.2b Represent a fraction a/b on a number line diagram by marking off a lengths $1 / b$ from 0 . Recognize that the resulting interval has size a / b and that its endpoint locates the number a / b on the number line.	Locate fractions on a number line	Locating fractions on a number line
CC.3.NF.3a Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line.	Investigate equivalent fractions	Investigating equivalent fractions
CC.3.NF.3b Recognize and generate simple equivalent fractions. Explain why the fractions are equivalent.	Find simple equivalent fractions	Recognize \& generate simple equivalent fractions
CC.3.NF.3c Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers.	Whole numbers as fractions	Express \& recognize whole numbers as fractions
CC.3.NF.3d Compare two fractions with the same numerator or the same denominator, by reasoning about their size. Recognize that valid comparisons rely on the two fractions referring to the same whole. Record the results of	Compare fractions	Comparing fractions: same numerator or denominator

comparisons with the symbols $>,=$, or $<$, and justify the conclusions.		

4 Measurements and Data

Outcome	Quests	Content
CC.3.MD. 1 Solve problems involving measurement and estimation of intervals of time, liquid volumes, and masses of objects. Tell and write time to the nearest minute and measure time intervals in minutes. Solve word problems involving addition and subtraction of time intervals in minutes.	Tell \& write time to the minute	Telling time to the minute, digital \& analog
		Calculating elapsed time
		Using timetables
CC.3.MD. 2 Solve problems involving measurement and estimation of intervals of time, liquid volumes, and masses of objects. Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (I). Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units to represent the problem.	Liquid volume	Estimating, comparing \& measuring in liters
		Liquid volume: milliliters
		Solving word problems involving liquid volume
CC.3.MD. 3 Represent and interpret data. Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step "how many more" and "how many less" problems using information presented in scaled bar graphs.	Scaled picture \& bar graphs	Reading \& representing data: scaled picture graph
		Reading \& representing data: scaled bar graph
CC.3.MD. 4 Represent and interpret data. Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate unitswhole numbers, halves, or quarters.	Represent \& read line plots	Representing \& reading line plots
CC.3.MD.5a A square with side length 1 unit, called "a unit square," is said to have "one square unit" of area, and can be used to measure area.	Estimate area with tiling	Estimating area with tiling
CC.3.MD.5b. A plane figure which can be covered without gaps or overlaps by n unit squares is said to have an area of n square units.	Measure area with unit squares	Measuring area with unit squares

CC.3.MD. 6 Geometric measurement: understand concepts of area and relate area to multiplication and to addition. Measure areas by counting unit squares (square cm, square m, square in, square ft, and improvised units).	Measure area with formal units	Introducing formal units for area
CC.3.MD.7a Find the area of a rectangle with whole-number side lengths by tiling it, and show that the area is the same as would be found by multiplying the side lengths.	Find the area with rectangles	
CC.3.MD.7b Multiply side lengths to of find areas of rectangles with whole-number side lengths in the context of solving real world and mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning.	Area problems: multiplication	Finding the area of rectangles, repeated addition
CC.3.MD.7c Use tiling to show in a concrete case that the area of a rectangle with whole-number side lengths a and b + c is the sum of a x b and a \times c. Use area models to represent the distributive property in mathematical reasoning.	Find the area using area models	Solving area problems using multiplication
CC.3.MD.7d Recognize area as additive. Find areas of rectilinear figures by decomposing them into non-overlapping rectangles and adding the areas of the non- overlapping parts, applying this technique to solve real world problems.	Find the area of rectilinear figures	Finding the area of rectangles, area models
CC.3.MD.8 Geometric measurement: recognize perimeter as an attribute of plane figures and distinguish between linear and area measures. Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different area or with the same area and different perimeter.		

5 Geometry

Outcome	Quests	Content
CC.3.G.1 Reason with shapes and their attributes. Understand that shapes in different categories may share attributes, and that the shared attributes can define a larger category. Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.	Shapes \& their attributes	Sorting \& naming quadrilaterals
CC.3.G.2 Reason with shapes and their attributes. Partition shapes dimensing \& describing two- into parts with equal areas. Express the area of each part as a unit fraction of the whole.	Partition shapes	Partition shapes into parts with equal areas

Grade 4

1 Operations and Algebraic Thinking

Outcome	Quests	Content
CC.4.OA.1 Use the four operations with whole numbers to solve problems. Interpret a multiplication equation as a comparison.	Interpret multiplication as a comparison	Describe comparisons using multiplication language
CC.4.OA.2 Use the four operations with whole numbers to solve problems. Multiply or divide to solve word problems involving multiplicative comparison.	Comparison word problems	Solving comparison word problems
CC.4.OA.3 Use the four operations with whole numbers to solve problems. Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.		Word problems: 4 operations

2 Number and Operations in Base 10

Outcome	Quests	Content
CC.4.NBT. 1 Generalize place value understanding for multi-digit whole numbers. Recognize that in a multidigit whole number, a digit in one place represents ten times what it represents in the place to its right.	Place value for multidigit numbers	Generalizing place value understanding
CC.4.NBT. 2 Generalize place value understanding for multi-digit whole numbers. Read and write multidigit whole numbers using base-ten numerals, number names, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons.	Read \& write multidigit numbers	Reading \& writing multi-digit numbers
		Comparing two 6-digit numbers
CC.4.NBT. 3 Generalize place value understanding for multi-digit whole numbers. Use place value understanding to round multi-digit whole numbers to any place.	Round 6-digit numbers	Rounding 6-digit numbers to any place value
CC.4.NBT. 4 Use place value understanding and properties of operations to perform multi-digit arithmetic. Fluently add and subtract multi-digit whole numbers using the standard algorithm.	Add multi-digit numbers	Adding multi-digit numbers, no regrouping
		Adding multi-digit numbers, regrouping
CC.4.NBT. 5 Use place value understanding and properties of operations to perform multi-digit arithmetic. Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.	Multiply multi-digit numbers	Multiplying multi-digit numbers, algorithm
		Multiplying multi-digit numbers using place value
		Multiplying multi-digit numbers, area model
CC.4.NBT. 6 Use place value understanding and properties of operations to perform multi-digit arithmetic. Find whole-number quotients and remainders with up to four-digit dividends and onedigit divisors, using strategies based on place value, the	Divide multi-digit numbers	Dividing numbers, place value blocks
		Dividing numbers, area model
		Dividing numbers, place value strategy
		Introducing remainders in division

Abstract

properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

3 Number and Operations - Fractions

Outcome	Quests	Content
CC.4.NF. 1 Extend understanding of fraction equivalence and ordering. Explain why a fraction a / b is equivalent to a fraction $(n \times a) /(n \times$ b) by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.	Fraction equivalence	Equivalent fractions with models
		Equivalent fractions with multiplication
CC.4.NF. 2 Extend understanding of fraction equivalence and ordering. Compare two fractions with different numerators and different denominators. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols $>$, $=$, or <, and justify the conclusions.	Compare fractions	Compare fractions using models
		Compare fractions, different numerator/denominator
		Compare fractions using common denominators
CC.4.NF.3a Understand addition and subtraction of fractions as joining and separating parts referring to the same whole.	Understand adding/subtracting fractions	Adding unit fractions, same denominators: models
		Adding fractions, same denominator
		Subtracting fractions, same denominator
		Adding \& subtracting fractions, same denominator
CC.4.NF.3b Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions.	Decompose fractions	Decomposing fractions
CC.4.NF.3c Add and subtract mixed numbers with like denominators.	Add \& subtract mixed numbers	Adding mixed numbers, same denominator
		Subtracting mixed numbers, same denominator
CC.4.NF.3d Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators.	Word problems: add \& subtract fractions	Word problems: adding \& subtracting fractions
CC.4.NF.4a Understand a fraction a / b as a multiple of $1 / b$.	Fractions: multiples of unit fractions	Fractions: multiples of unit fractions

CC.4.NF.4b Understand a multiple of a / b as a multiple of $1 / b$, and use this understanding to multiply a fraction by a whole number.	Multiply fractions by whole numbers	Multiply fractions by whole numbers using models
CC.4.NF.4c Solve word problems involving multiplication of a fraction by a whole number.	Word problems: multiply fractions	Word problems: multiply fractions by whole numbers
CC.4.NF. 5 Understand decimal notation for fractions, and compare decimal fractions. Express a fraction with denominator 10 as an equivalent fraction with denominator 100, and use this technique to add two fractions with respective denominators 10 and 100.	Add fractions: denominator of 10 \& 100	Adding fractions with denominators of 10 \& 100
CC.4.NF. 6 Understand decimal notation for fractions, and compare decimal fractions. Use decimal notation for fractions with denominators 10 or 100.	Fractions as decimals	Introducing decimal notation
		Introducing tenths
		Introducing hundredths
CC.4.NF. 7 Understand decimal notation for fractions, and compare decimal fractions. Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when two decimals refer to the same whole. Record the results of comparisons with the symbols >, $=$, or $<$, and justify the conclusions.	Compare decimals to hundredths	Comparing \& ordering decimals to hundredths

4 Measurements and Data

Outcome	Quests	Content
CC.4.MD. 1 Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit. Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; I, ml; hr, min, sec. measure		Units of length: $\mathrm{mm} / \mathrm{cm} / \mathrm{m} / \mathrm{km}$

longest and shortest specimens in an insect collection.		
CC.4.MD.5a An angle is measured with reference to a circle with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. An angle that turns through 1/360 of a circle is called a "one-degree angle," and can be used to measure angles.	Angle measurements in a circle	Using a circular protractor to measure angles
CC.4.MD.6 Geometric measurement: understand concepts of angle and measure angles. Measure angles in whole number degrees using a protractor. Sketch angles of specified measure.	Measure \& estimate angles	Measuring \& estimating angles
CC.4.MD.7 Geometric measurement: understand concepts of angle and measure angles.	Problems with adjacent angles	Solving problems with Recognize angle measure as additive. When an angle is decomposed into non-overlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtraction problems to find unknown angles on a diagram in real world and mathematical problems.

5 Geometry

Outcome	Quests	Content
CC.4.G.1 Draw and identify lines and angles, and classify shapes by properties of their lines and angles. Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two- dimensional figures.	Spatial features in 2-D figures	
		Classifying angles
		Labeling points \& lines CC.4.G.2 Draw and identify lines spatial features in and angles, and classify shapes by properties of their lines and angles. Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of a specified size. Recognize right triangles as a category, and identify right triangles.

Grade 5

1 Operations and Algebraic Thinking

Outcome	Quests	Content
CC.5.OA. 1 Write and interpret numerical expressions. Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.	Grouping symbols	Order of operations with grouping symbols
CC.5.OA.2 Write and interpret numerical expressions. Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them.	Write \& interpret expressions	Writing \& interpreting expressions without solving
CC.5.OA.3 Analyze patterns and relationships. Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane.	Numerical patterns	

2 Number and Operations in Base 10

Outcome	Quests	Content
CC.5.NBT. 1 Understand the place value system. Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and $1 / 10$ of what it represents in the place to its left.	The place value system	Identifying the place value of a digit in a number
		Understanding the place value system: powers of 10
CC.5.NBT. 2 Understand the place value system. Explain patterns in the number of zeros of the product when multiplying a number by powers of 10 , and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10 . Use whole number exponents to denote powers of 10.	Multiply \& divide by powers of 10	Multiplying decimals by powers of 10
		Dividing decimals by powers of 10
		Finding numbers before \& after using powers of 10
		Writing numbers using powers of 10
CC.5.NBT.3a Read and write decimals to thousandths using base-ten numerals, number names, and expanded form.	Read \& write decimals to thousandths	Reading \& writing decimals to thousandths
CC.5.NBT.3b Compare two decimals to thousandths based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons.	Compare decimals to thousandths	Comparing \& ordering decimals to thousandths
CC.5.NBT. 4 Understand the place value system. Use place value understanding to round decimals to any place.	Round decimals	Rounding decimals
CC.5.NBT. 5 Perform operations with multi-digit whole numbers and with decimals to hundredths. Fluently multiply multidigit whole numbers using the standard algorithm.	Multiply multi-digit numbers, algorithm	Multiplying multi-digit numbers, algorithm
CC.5.NBT. 6 Perform operations with multi-digit whole numbers and with decimals to hundredths. Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using	Divide multi-digit numbers	Using facts to divide 2-digit multiples of 10
		Multiplying \& dividing 2-digit multiples of 10
		Dividing by subtracting partial products
		Dividing multi-digit numbers, algorithm
		Divide multi-digit numbers, whole number remainder

equations, rectangular arrays, and/or area models.		
CC.5.NBT. 7 Perform operations with multi-digit whole numbers and with decimals to hundredths. Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.	Operations with decimals	Adding decimals to hundredths, algorithm
		Subtracting decimals using mental strategies
		Subtracting decimals to hundredths, algorithm
		Multiplying decimals \& whole numbers
		Multiplying decimals to hundredths, algorithm
		Multiplying decimals using mental strategies
		Multiplicative relationships with decimals
		Divide whole numbers \& decimals, mental strategies
		Dividing whole numbers \& decimals, algorithm

3 Number and Operations - Fractions

Outcome	Quests	Content
CC.5.NF.1 Use equivalent fractions as a strategy to add and subtract fractions. Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators.	Add fractions	

represent fraction products as rectangular areas.		
CC.5.NF.5a. Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication.	Compare products \& factors	Comparing products \& factors
CC.5.NF.5b. Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case); explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence $a / b=(n \times a) /$ $(\mathrm{n} \times \mathrm{b})$ to the effect of multiplying a / b by 1 .	Effects of multiplying fractions	Interpreting multiplying fractions as scaling
CC.5.NF. 6 Apply and extend previous understandings of multiplication and division to multiply and divide fractions. Solve real world problems involving multiplication of fractions and mixed numbers.	Multiply fractions word problems	Word problems: multiply fractions \& mixed numbers
CC.5.NF.7a Interpret division of a unit fraction by a non-zero whole number, and compute such quotients.	Divide unit fractions by whole numbers	Dividing unit fractions by whole numbers, models
CC.5.NF.7b Interpret division of a whole number by a unit fraction, and compute such quotients.	Divide whole numbers by unit fractions	Dividing whole numbers by unit fractions, models
CC.5.NF.7c Solve real-world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions.	Divide unit fractions word problems	Word problems: divide unit fractions/whole numbers

4 Measurement and Data

Outcome	Quests	Content
CC.5.MD. 1 Convert like measurement units within a given measurement system. Convert among different-sized standard measurement units within a given measurement system, and use these conversions in solving multistep real world problems.	Convert measurement units	Converting between standard metric units of length
		Converting between standard metric units of mass
		Converting metric units of volume \& capacity
		Converting between customary units of length
		Converting customary units of volume \& capacity
		Converting between customary units of mass
		Word problems: measurement conversions
CC.5.MD. 2 Represent and interpret data. Make a line plot to display a data set of measurements in fractions of a unit ($1 / 2,1 / 4,1 / 8$). Use operations on fractions for this grade to solve problems involving information presented in line plots.	Fraction problems: line plots	Represent \& interpret measurements: line plots
CC.5.MD. 4 Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition. Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units.	Measure volume with unit cubes	Measuring volume: unit cubes \& cubic centimeters
CC.5.MD.5a Find the volume of a right rectangular prism with wholenumber side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent three-fold whole-number products as volumes.	Volume: rectangular prisms	Volume: additive \& multiplicative strategies
CC.5.MD.5b Apply the formulas $V=(l)(w)(h)$ and $V=(b)(h)$ for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real world and mathematical problems.	Volume formulas: rectangular prism	Applying volume formulas for rectangular prisms

CC.5.MD.5c Recognize volume as additive. Find volumes of solid figures composed of two non-	Volume: composite rectangular prisms	Volume of composite rectangular prisms
overlapping right rectangular		
prisms by adding the volumes of		
the non-overlapping parts, applying		
this technique to solve real world		
problems.		

5 Geometry

Outcome	Quests	Content
CC.5.G. 1 Graph points on the coordinate plane to solve realworld and mathematical problems. Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond.	The coordinate plane	Introducing the coordinate plane
CC.5.G. 2 Graph points on the coordinate plane to solve realworld and mathematical problems. Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.	Graph in the first quadrant	Graphing in the first quadrant
CC.5.G.3 Classify two-dimensional figures into categories based on their properties. Understand that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category. For example, all rectangles have four right angles and squares are rectangles, so all squares have four right angles.	Attributes of 2-D figures	Sorting plane shapes
CC.5.G. 4 Classify two-dimensional figures into categories based on their properties. Classify twodimensional figures in a hierarchy based on properties.	Classify 2-D figures, properties	Classifying 2-D figures in a hierarchy Classifying quadrilaterals

Grade 6

1 Ratios and Proportional Relationships

Outcome	Quests	Content
CC.6.RP. 1 Understand ratio concepts and use ratio reasoning to solve problems. Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities.	Introduction to ratios	Defining, understanding \& writing ratios
CC.6.RP. 2 Understand ratio concepts and use ratio reasoning to solve problems. Understand the concept of a unit rate a / b associated with a ratio $a: b$ with $b \neq$ 0 (b not equal to zero), and use rate language in the context of a ratio relationship.	Introduction to unit rate	Understanding unit rates \& making comparisons
CC.6.RP.3a Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.	Ratio tables	Creating tables of equivalent ratios
		Plotting coordinates from ratio tables
CC.6.RP.3b Solve unit rate problems including those involving unit pricing and constant speed.	Unit rate	Solving unit rate problems for given time periods
		Solving unit rate problems involving unit pricing
CC.6.RP.3c Find a percent of a quantity as a rate per 100; solve problems involving finding the whole given a part and the percent.	Percent of a quantity	Expressing rates as a percent
		Solving percent problems: finding the whole
CC.6.RP.3d Use ratio reasoning to convert measurement units; manipulate and transform units appropriately when multiplying or dividing quantities.	Convert measurements using ratios	Converting measurement units using ratios

2 Number System

Outcome	Quests	Content
CC.6.NS. 1 Apply and extend previous understandings of multiplication and division to divide fractions by fractions. Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions.	Divide fractions	Dividing a fraction by a positive integer
		Dividing a positive integer by a fraction
		Dividing a fraction by a fraction
		Dividing fractions \& mixed numbers
		Solving word problems: division of fractions
CC.6.NS. 2 Compute fluently with multi-digit numbers and find common factors and multiples. Fluently divide multi-digit numbers using the standard algorithm.	Divide multi-digit numbers, algorithm	Divide 4-digit by 2-digit numbers, no remainder
		Divide 4-digit by 2-digit numbers, with remainders
		Divide 4-digit by 2-digit numbers
CC.6.NS. 3 Compute fluently with multi-digit numbers and find common factors and multiples. Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.	Operations with multidigit decimals	Adding decimals using the standard algorithm
		Subtracting decimals using the standard algorithm
		Multiplying decimals using the standard algorithm
		Dividing decimals using the standard algorithm
		Word problems: adding \& subtracting decimals
		Word problems: multiplying \& dividing decimals
CC.6.NS. 4 Compute fluently with multi-digit numbers and find common factors and multiples. Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12 . Use the distributive property to express a sum of two whole numbers $1-100$ with a common factor as a multiple of a sum of two whole numbers with no common factor.	GCF \& LCM	Greatest common factor
		Least common multiple
		Solving word problems: factors \& multiples
		Factoring using the distributive property
CC.6.NS. 5 Apply and extend previous understandings of numbers to the system of rational numbers. Understand that positive and negative numbers are used	Positive \& negative numbers	Investigating \& interpreting integers

together to describe quantities having opposite directions or values; use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.				
CC.6.NS.6a Recognize opposite signs of numbers as indicating locations on opposite sides of 0 the number line; recognize that the opposite of the opposite of a number is the number itself, and that 0 is its own opposite.		Opposites on the number line		
CC.6.NS.6b Understand signs of numbers in ordered pairs as indicating locations in quadrants of the coordinate plane; recognize that when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes.		Graph in the 4		
CC.6.NS.6c Find and position integers and other rational numbers on a horizontal or vertical number				
line diagram; find and position pairs				
of integers and other rational				
numbers on a coordinate plane.			\quad	Graph rational
:---				
numbers				

quadrants of the coordinate plane.		
Include use of coordinates and		
absolute value to find distances		
between points with the same first		
coordinate or the same second		
coordinate.		

3 Expressions and Equations

Outcome	Quests	Content
CC.6.EE.1 Apply and extend previous understandings of arithmetic to algebraic expressions. Write and evaluate numerical expressions involving whole- number exponents.	Numerical expressions with exponents	Writing numerical expressions with exponents
CC.6.EE.2a Write expressions that record operations with numbers and with letters standing for numbers. For example, express the ealculation "Subtract y from 5" as 5 5 5 expessions with exponents	Write expressions: numbers \& variables	Writing expressions with numbers \& variables
CC.6.EE.2b Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity.		Parts of an expression

whether a given number in a specified set makes an equation or inequality true.		
CC.6.EE.6 Reason about and solve one-variable equations and inequalities. Use variables to represent numbers and write expressions when solving a realworld or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.	Write algebraic expressions	Writing algebraic expressions
CC.6.EE. 7 Reason about and solve one-variable equations and inequalities. Solve real-world and mathematical problems by writing and solving equations of the form x $+p=q$ and $p x=q$ for cases in which p, q and x are all nonnegative rational numbers.	Solve 1-step equations	Preserving equality in equations
		Solving simple linear equations using models
		1-step equations: add/subtract, positive integers
		1-step equations: add/subtract, rational numbers
		1-step equations: multiply, positive integers
		1-step equations: multiply, rational numbers
		1-step equations: division, rational numbers
		Writing \& solving 1-step equations
CC.6.EE. 8 Reason about and solve one-variable equations and inequalities. Write an inequality of the form $x>c$ or $x<c$ to represent a constraint or condition in a realworld or mathematical problem. Recognize that inequalities of the form $x>c$ or $x<c$ have infinitely many solutions; represent solutions of such inequalities on number line diagrams.	Write \& represent inequalities	Writing inequalities
		Represent algebraic inequalities on a number line
CC.6.EE. 9 Represent and analyze quantitative relationships between dependent and independent variables. Use variables to represent two quantities in a realworld problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the	Independent \& dependent variables	Independent \& dependent variables

other quantity, thought of as the		
independent variable. Analyze the		
relationship between the		
dependent and independent		
variables using graphs and tables,		
and relate these to the equation.		

4 Geometry

Outcome	Quests	Content
CC.6.G. 1 Solve real-world and mathematical problems involving area, surface area, and volume. Find area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical problems.	Area: triangles \& quadrilaterals	Finding the area of a right triangle
		Investigating the area of special quadrilaterals
		Real-world area problems: special quadrilaterals
CC.6.G. 2 Solve real-world and mathematical problems involving area, surface area, and volume. Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $V=I \mathrm{wh}$ and $\mathrm{V}=\mathrm{bh}$ to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.	Volume: rectangular prisms, formula	Volume: rectangular prisms, fraction edge lengths
CC.6.G.3 Solve real-world and mathematical problems involving area, surface area, and volume. Draw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining points with the same first coordinate or the same second coordinate. Apply these techniques in the context of solving real-world and mathematical problems.	Polygons in the coordinate plane	Drawing polygons in the coordinate plane
CC.6.G. 4 Solve real-world and mathematical problems involving	Surface area	Connecting 3-D objects with their nets
area, surface area, and volume. Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these		Calculating the surface area of rectangular prisms

techniques in the context of solving real-world and mathematical problems.		

5 Statistics and Probability

Outcome	Quests	Content		
$\begin{array}{l}\text { CC.6.SP.1 Develop understanding } \\ \text { of statistical variability. Recognize a } \\ \text { statistical question as one that } \\ \text { anticipates variability in the data } \\ \text { related to the question and } \\ \text { accounts for it in the answers. }\end{array}$		Statistical questions		
Evaluating statistical				
questions			$]$	CC.6.SP.2 Develop understanding
:---				
of statistical variability. Understand				
that a set of data collected to				
answer a statistical question has a				
distribution which can be described				
by its center, spread, and overall				
shape.				

which the data was gathered. d. Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data was gathered.		Comparing measures of center \& variation

Mathletics

For more information about Mathletics, contact our friendly team.

www.mathletics.com/contact

