Mathletics NWEA Common Core Statistics \& Probability

Skill Quests

RIT Score Band
May, 2022

NWEA Common Core

 Statistics and Probability 6-8Skill Quests
May 2022
RIT Score Band 218-221 3
1 Develop understanding of statistical variability 3
2 Summarize and describe distributions 3
RIT Score Band 222-226 5
1 Use random sampling to draw inferences about a population 5
2 Draw informal comparative inferences about two populations. 5
RIT Score Band 227-228 7
1 Investigate patterns of association in bivariate data 7

RIT Score Band 218-221

1 Develop understanding of statistical variability

Outcome	Quests	Content
6.SP.A.1 Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers.	Statistical questions	Evaluating statistical questions
6.SP.A.2 Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.	Shape of data distribution	Introducing the shape of data distribution
6.SP.A.3 Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.	Measures of center and variation	Introducing the upper and lower quartiles

2 Summarize and describe distributions

Outcome	Quests	Content
6.SP.B. 4 Display numerical data in plots on a number line, including dot plots, histograms, and box plots.	Data displays	Constructing data displays
		Reading and interpreting data in a dot plot
		Reading and interpreting data in a histogram
		Reading and interpreting box-and-whisker plots
6.SP.B. 5 Summarize numerical data sets in relation to their context.	Summarizing numerical data	Summarizing numerical data
6.SP.B.5.A Reporting the number of observations.	Reporting observations	Reporting observations in a data display
6.SP.B.5.B Describing the nature of the attribute under investigation, including how it was measured and its units of measurement.	Attributes of data	Describing attributes of data in data displays
6.SP.B.5.C Giving quantitative measures of center (median and/or	Calculate measures of center \& variation	Calculating the mean absolute deviation
mean) and variability (interquartile		Calculating the median
range and/or mean absolute		Calculating the mean

deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.		Identifying clusters, gaps and outliers
6.SP.B.5.D Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.	Relating measures of center \& variation	Choosing appropriate measures of center \& variation
		Comparing measures of center and variation

RIT Score Band 222-226

1 Use random sampling to draw inferences about a population

Outcome	Quests	Content
7.SP.A.1 Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.	Understanding sampling	
7.SP.A.2 Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions.	Drawing inferences from samples	Drawing inferences from samples

2 Draw informal comparative inferences about two populations

Outcome	Quests	Content
7.SP.B.3 Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability.	Comparing data distributions	Comparing data distributions
7.SP.B.4 Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations.	Drawing comparative inferences	Drawing comparative inferences
7.SP.C.5 Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the	Introducing probability	Introducing probability

event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.		
7.SP.C. 6 Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability.	Probability of chance events	Probability of chance events: relative frequency
7.SP.C.7.A Develop a uniform	De	Theoretical probability
probability model by assigning equal probability to all outcomes,	probability of events	Predicting outcomes of chance experiments
and use the model to determine probabilities of events.		Finding the complement of an event
7.SP.C.7.B Develop a probability model (which may not be uniform)	Observing frequencies in data	Finding the approximate probability
by observing frequencies in data generated from a chance process.		Comparing observed frequency \& expected frequency
7.SP.C.8.A Understand that, just as with simple events, the probability	Probability: compound events	Investigating mutually exclusive events
of a compound event is the fraction of outcomes in the sample space for which the compound event occurs.		Calculating probabilities of compound events
7.SP.C.8.B Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., "rolling double sixes"), identify the outcomes in the sample space which compose the event.	Sample spaces for compound events	Representing sample spaces \& identifying outcomes
7.SP.C.8.C Design and use a simulation to generate frequencies for compound events.	Independent \& dependent compound events	Independent/dependent compound events

RIT Score Band 227-228

1 Investigate patterns of association in bivariate data

Outcome	Quests	Content
8.SP.A. 1 Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.	Using and interpreting scatter plots	Using and interpreting scatter plots
8.SP.A. 2 Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.	Estimating the line of best fit	Estimating the line of best fit
8.SP.A. 3 Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept.	Interpreting the line of best fit	Interpreting the line of best fit
8.SP.A. 4 Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables.	Two-way tables	Constructing and interpreting two-way tables

Mathletics

For more information about Mathletics, contact our friendly team.

www.mathletics.com/contact

