Mathletics Ohio Program of Studies

Skill Quests

Grades 7 - 8

January, 2023

Mathletics

Ohio Program of Studies Skill Quests January 2023

Grade 7	4
1 Ratios and Proportional Relationships	4
1.1 Analyze proportional relationships and use them to solve realworld and mathematical problems	4
2 The Number System	5
2.1 Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers	5
3 Expressions and Equations	7
3.1 Use properties of operations to generate equivalent expressions	7
3.2 Solve real-life and mathematical problems using numerical and algebraic expressions and equations	7
4 Geometry	9
4.1 Draw, construct, and describe geometrical figures and describe the relationships between them	9
4.2 Solve real-life and mathematical problems involving angle measure, circles, area, surface area, and volume	9
5 Statistics and Probability	11
5.1 Use sampling to draw conclusions about a population	11
5.2 Summarize and describe distributions representing one population and draw informal comparisons between two populations	11
5.3 Investigate chance processes and develop, use, and evaluate probability models	11
Grade 8	13
1 The Number System	13
1.1 Know that there are numbers that are not rational, and approximate them by rational numbers	13
2 Expressions and Equations	14
2.1 Work with radicals and integer exponents	14
2.2 Understand the connections between proportional relationships, lines, and linear equations	15
2.3 Analyze and solve linear equations and pairs of simultaneous linear equations	15
3 Functions	17
3.1 Define, evaluate, and compare functions	17
3.2 Use functions to model relationships between quantities	17
4 Geometry	19

	4.1 Understand congruence and similarity using physical models, transparencies, or	
	geometry software	19
	4.2 Understand and apply the Pythagorean Theorem	. 20
	4.3 Solve real-world and mathematical problems involving volume of cylinders, cones	
5	Statistics and Probability	
	5.1 Investigate patterns of association in bivariate data	21

Grade 7

1 Ratios and Proportional Relationships

1.1 Analyze proportional relationships and use them to solve realworld and mathematical problems

Outcome	Quests	Content
Compute unit rates associated with ratios of fractions, including ratios of lengths, areas, and other quantities measured in like or different units.	Unit rates with fractions	Solving unit rate problems involving fractions
Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin.	Identify proportional relationships	Identifying proportional relationships
Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.	Constant of proportionality	Identifying the constant of proportionality
Represent proportional relationships by equations.	Represent proportional relationships	Representing proportional relationships: equations
Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points (0, 0) and (1, r) where r is the unit rate.	Graphs of proportional relationships	Interpreting graphs of proportional relationships
Use proportional relationships to solve multistep ratio and percent problems.	Ratio & percent problems	Solving multi-step ratio & percent problems

2 The Number System

2.1 Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers

Outcome	Quests	Content
Describe situations in which opposite quantities combine to make 0.	Opposites	Describing situations involving opposites
Understand p + q as the number located a distance q from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts.	Add rational numbers	Opposites & absolute value Adding rational numbers Adding positive & negative fractions Adding positive & negative decimals Adding integers
Understand subtraction of rational numbers as adding the additive inverse, $p - q = p + (-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in realworld contexts.	Subtract rational numbers	Subtracting rational numbers: adding the inverse Subtracting positive & negative fractions Subtracting positive & negative decimals Subtracting integers Subtracting rational numbers: absolute value
Apply properties of operations as strategies to add and subtract rational numbers.	Rational numbers: addition properties	Adding & subtracting rational numbers: properties
Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as (-1)(-1) = 1 and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.	Multiply rational numbers	Multiplying rational numbers Multiplying positive & negative fractions Multiplying positive & negative decimals Multiplying integers Products of rational numbers: real-world contexts
Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are	Divide integers	Dividing integers Quotients of rational numbers: real-world contexts

integers, then -(p/q) = (-p) /q = p/(- q). Interpret quotients of rational numbers by describing real-world contexts.		
Apply properties of operations as strategies to multiply and divide rational numbers.	Rational numbers: properties	Multiply & divide rational numbers: properties
Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0s or eventually repeats.	Convert rational numbers to decimals	Use long division to convert rationals to decimals
Solve real-world and mathematical problems involving the four operations with rational numbers. Computations with rational numbers extend the rules for manipulating fractions to complex fractions.	Rational numbers problems: 4 operations	Rational numbers problems: 4 operations

3 Expressions and Equations

3.1 Use properties of operations to generate equivalent expressions

Outcome	Quests	Content
Apply properties of operations as	Linear expressions:	Simplifying algebraic
strategies to add, subtract, factor,	properties	expressions: add & subtract
and expand linear expressions with		Distributive property: algebraic
rational coefficients.		expressions
		Factoring algebraic
		expressions
In a problem context, understand	Interpret expressions	Rearranging expressions to
that rewriting an expression in an		interpret quantities
equivalent form can reveal and		
explain properties of the quantities		
represented by the expression and		
can reveal how those quantities are		
related.		

3.2 Solve real-life and mathematical problems using numerical and algebraic expressions and equations

Outcome	Quests	Content
Solve multi-step real-life and	Problems with rational	Solving problems with rational
mathematical problems posed with	numbers	numbers
positive and negative rational		
numbers in any form (whole		
numbers, fractions, and decimals),		
using tools strategically. Apply		
properties of operations to calculate		
with numbers in any form; convert		
between forms as appropriate; and assess the reasonableness of		
answers using mental computation and estimation strategies.		
Solve word problems leading to	Solve 2-step equations	Solving 2-step equations:
equations of the form $px + q = r$ and	Solve 2 step equations	word problems
p(x + q) = r, where p, q, and r are		2-step equations, positive
specific rational numbers. Solve		integer coefficients
equations of these forms fluently.		2-step equations, integer
Compare an algebraic solution to		coefficients
an arithmetic solution, identifying		2-step equations, positive
, ,		rational coefficients

the sequence of the operations used in each approach.		2-step equations, rational coefficients
		2-step equations, distributive property
Solve word problems leading to inequalities of the form $px + q > r$ or $px + q < r$, where p , q , and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem.	Solve 2-step inequalities	Creating & solving 2-step inequalities Representing inequalities Graphing the solution of an inequality Solving 2-step inequalities

4 Geometry

4.1 Draw, construct, and describe geometrical figures and describe the relationships between them

Outcome	Quests	Content
Compute actual lengths and areas	Scale drawings	Scale drawings
from a scale drawing and		
reproduce a scale drawing at a		
different scale.		
Focus on constructing triangles	Construct triangles	Triangle inequality theorem
from three measures of angles or		Constructing triangles with
sides, noticing when the conditions		given conditions
determine a unique triangle, more		
than one triangle, or no triangle.		
Describe the two-dimensional	Cross sections of 3-D	Describing cross sections of 3-
figures that result from slicing	figures	D figures
three-dimensional figures, as in		
plane sections of right rectangular		
prisms and right rectangular		
pyramids.		

4.2 Solve real-life and mathematical problems involving angle measure, circles, area, surface area, and volume

Outcome	Quests	Content
Explore and understand the relationships among the	Relationships between parts of a circle	Introducing the parts of a circle
circumference, diameter, area, and	parts of a circle	Circle
radius of a circle.		
Know and use the formulas for the	Circles: area &	Finding the circumference of a
area and circumference of a circle	circumference	circle
and use them to solve real-world		Finding the area of a circle
and mathematical problems.		
Use facts about supplementary,	Use angle facts to solve	Supplementary angles
complementary, vertical, and	problems	Complementary angles
adjacent angles in a multi-step		Adjacent angles
problem to write and solve simple		Vertical angles
equations for an unknown angle in		
a figure.		
Solve real-world and mathematical	Area, volume & surface	Area: polygons
problems involving area, volume,	area	Solving real-life problems:
and surface area of two- and three-		area of polygons
dimensional objects composed of		Volume: right prisms

triangles, quadrilaterals, polygons,	Surface area: rectangular &
cubes, and right prisms.	triangular prisms

5 Statistics and Probability

5.1 Use sampling to draw conclusions about a population

Outcome	Quests	Content
Differentiate between a sample and	Understand sampling	Understanding sampling
a population.		
Understand that conclusions and	Sample conclusions	Understanding sampling
generalizations about a population		conclusions
are valid only if the sample is		Drawing inferences from
representative of that population.		samples
Develop an informal understanding		
of bias.		

5.2 Summarize and describe distributions representing one population and draw informal comparisons between two populations

Outcome	Quests	Content
Summarize quantitative data sets	Compare data	Comparing data distributions
in relation to their context by using mean absolute deviationG (MAD),	distributions	
interpreting mean as a balance		
point.		
Informally assess the degree of	Draw comparative	Drawing comparative
visual overlap of two numerical	inferences	inferences
data distributions with roughly		
equal variabilities, measuring the		
difference between the centers by		
expressing it as a multiple of a		
measure of variability.		

5.3 Investigate chance processes and develop, use, and evaluate probability models

Outcome	Quests	Content
Understand that the probability of a	Introduction to	Introducing probability
chance event is a number between	probability	
0 and 1 that expresses the		
likelihood of the event occurring.		
Larger numbers indicate greater		
likelihood. A probability near 0		

indicates an unlikely event; a probability around 1/2 indicates an event that is neither unlikely nor likely; and a probability near 1 indicates a likely event.		
Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its longrun relative frequency, and predict the approximate relative frequency given the probability.	Probability of chance events	Probability of chance events: relative frequency
Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events.	Determine the probability of events	Theoretical probability Predicting outcomes of chance experiments Finding the complement of an event
Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process.	Observe frequencies in data	Finding the approximate probability Comparing observed frequency & expected frequency
Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs.	Probability: compound events	Investigating mutually exclusive events Calculating probabilities of compound events
Represent sample spaces for compound events using methods such as organized lists, tables, and tree diagrams. For an event described in everyday language, e.g., "rolling double sixes," identify the outcomes in the sample space which compose the event.	Sample spaces for compound events	Representing sample spaces & identifying outcomes
Design and use a simulation to generate frequencies for compound events.	Independent & dependent compound events	Independent & dependent compound events

Grade 8

1 The Number System

1.1 Know that there are numbers that are not rational, and approximate them by rational numbers

Outcome	Quests	Content
Know that real numbers are either	Rational & irrational	Describing properties of
rational or irrational. Understand	numbers	irrational numbers
informally that every number has a		Classifying real numbers
decimal expansion which is		Converting repeating decimals
repeating, terminating, or is non-		to rational numbers
repeating and non-terminating.		Repeating & terminating
		decimals as fractions
Use rational approximations of	Approximate irrational	Comparing irrational numbers
irrational numbers to compare the	numbers	Locating irrational numbers on
size of irrational numbers, locate		a number line
them approximately on a number		Approximating the value of an
line diagram, and estimate the		irrational number
value of expressions, e.g., π^2 .		Finding square roots of non-
		perfect squares

2 Expressions and Equations

2.1 Work with radicals and integer exponents

Outcome	Quests	Content
Understand, explain, and apply the	Properties of integer	Using exponent notation
properties of integer exponents to	exponents	Product of powers, numerical
generate equivalent numerical		base
expressions.		Product of powers, algebraic
		base
		Quotient of powers, numerical
		base
		Quotient of powers, algebraic
		base
		Power of a power, numerical
		base
		Power of a power, algebraic
		base
		Zero exponents, numerical
		base
		Zero exponents, algebraic
		base
		Negative exponents, numerical
		base
		Negative exponents, algebraic
		base
		Simplifying expressions,
		numerical base
		Simplifying expressions,
		algebraic base
Use square root and cube root	Square & cube roots	Investigating square roots &
symbols to represent solutions to		cube roots
equations of the form $x^2 = p$ and x^3		Squares & square roots
= p, where p is a positive rational number. Evaluate square roots of		Evaluating expressions with
small perfect squares and cube		square & cube roots
roots of small perfect cubes. Know		Square roots of fractions & decimals
that $\sqrt{2}$ is irrational.		
•	Mrita numbara in	Cubes & cube roots
Use numbers expressed in the form of a single digit times an integer	Write numbers in scientific notation	Introducing scientific notation
power of 10 to estimate very large	Scientific Hotation	Converting scientific notation to standard form
or very small quantities and to		Converting standard form to
express how many times as much		scientific notation
one is than the other.		Scientific flotation
Perform operations with numbers	Calculations in	Calculations in scientific
expressed in scientific notation,	scientific notation	notation
including problems where both	Scientific Hotation	Hotation
including problems where both		

decimal notation and scientific	
notation are used. Use scientific	
notation and choose units of	
appropriate size for measurements	
of very large or very small	
quantities, e.g., use millimeters per	
year for seafloor spreading.	
Interpret scientific notation that has	
been generated by technology.	

2.2 Understand the connections between proportional relationships, lines, and linear equations

Outcome	Quests	Content
Graph proportional relationships,	Proportional	Graphing proportional
interpreting the unit rate as the	relationships	relationships
slope of the graph. Compare two		Comparing proportional
different proportional relationships		relationships
represented in different ways.		
Use similar triangles to explain why	Understand slope & y-	Using similar triangles to
the slope m is the same between	intercept	understand slope
any two distinct points on a non-		Writing equations of
vertical line in the coordinate plane;		proportional relationships
derive the equation $y = mx$ for a line		Writing equations of
through the origin and the equation		nonproportional relationships
y = mx + b for a line intercepting the		Identifying the slope in an
vertical axis at b.		equation or graph
		Identifying the y-intercept on a
		graph
		Graphing equations in slope-
		intercept form
		Graphing equations not in
		slope-intercept form
		Finding the y-intercept
		algebraically

2.3 Analyze and solve linear equations and pairs of simultaneous linear equations

Outcome	Quests	Content
Give examples of linear equations	Solution types of linear	Solution types of linear
in one variable with one solution,	equations	equations
infinitely many solutions, or no		
solutions. Show which of these		
possibilities is the case by		
successively transforming the given		

equation into simpler forms, until an equivalent equation of the form $x = a$, $a = a$, or $a = b$ results (where a and b are different numbers).		
Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.	Solve linear equations	Solving 3-step linear equations Solving linear equations, variables on both sides Solving linear equations, distributive property Using substitution to check solutions
Understand that the solution to a pair of linear equations in two variables corresponds to the point(s) of intersection of their graphs, because the point(s) of intersection satisfy both equations simultaneously.	Identify solutions, systems of equations	Identifying solutions, systems of equations
Use graphs to find or estimate the solution to a pair of two simultaneous linear equations in two variables. Equations should include all three solution types: one solution, no solution, and infinitely many solutions. Solve simple cases by inspection.	Solve systems of equations	Solving systems of equations graphically Solving systems of equations using elimination Solving systems of equations using substitution Checking the solution of a system of equations
Solve real-world and mathematical problems leading to pairs of linear equations in two variables.	Write & solve systems of equations	Writing & solving systems of equations

3 Functions

3.1 Define, evaluate, and compare functions

Outcome	Quests	Content
Understand that a function is a rule	Identify functions	Identifying functions
that assigns to each input exactly		
one output. The graph of a function		
is the set of ordered pairs		
consisting of an input and the		
corresponding output. Function		
notation is not required in Grade 8.		
Compare properties of two	Compare functions	Comparing functions
functions each represented in a		represented in different ways
different way (algebraically,		
graphically, numerically in tables, or		
by verbal descriptions).		
Interpret the equation $y = mx + b$ as	Interpret $y = mx + b$ as	Represent linear relationships
defining a linear function, whose	linear	in different forms
graph is a straight line; give		Equations of linear & non-
examples of functions that are not		linear relationships
linear.		

3.2 Use functions to model relationships between quantities

Outcome	Quests	Content
Construct a function to model a	Rate of change & initial	Rate of change & initial value
linear relationship between two	value	
quantities. Determine the rate of		
change and initial value of the		
function from a description of a		
relationship or from two (x, y)		
values, including reading these		
from a table or from a graph.		
Interpret the rate of change and		
initial value of a linear function in		
terms of the situation it models, and		
in terms of its graph or a table of		
values.		
Describe qualitatively the functional	Distance-time graphs	Distance-time graphs
relationship between two quantities		
by analyzing a graph, e.g., where		
the function is increasing or		
decreasing, linear or nonlinear.		
Sketch a graph that exhibits the		

ı		
	aualitative features of a function	
	qualitative realtires of a full ction	
	والموادون الموادية والموادية والموادية والموادية والموادية	
	that has been described verbally.	

4 Geometry

4.1 Understand congruence and similarity using physical models, transparencies, or geometry software

Outcome	Quests	Content
Verify experimentally the properties of rotations, reflections, and translations (include examples both with and without coordinates).	Introduction to rigid transformations	Translating points on the coordinate plane Reflecting points across the x-or y-axis Rotating points about the origin
Lines are taken to lines, and line segments are taken to line segments of the same length.	Preserved properties: length	Preserved properties: length
Angles are taken to angles of the same measure.	Preserved properties: angles	Preserved properties: angles
Parallel lines are taken to parallel lines.	Preserved properties: parallel lines	Preserved properties: parallel lines
Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them. (Include examples both with and without coordinates.)	Congruency: rigid transformations	Congruency: rigid transformations
Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.	Transformations, coordinates	Dilations, coordinates Translations, coordinates Rotations, coordinates Reflections, coordinates Sequences of transformations
Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar twodimensional figures, describe a sequence that exhibits the similarity between them.	Similarity: transformations	Introducing similarity Similarity: transformations
Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when	Triangles & angle relationships	Angle sum theorem Exterior angle theorem Angle relationships: parallel lines, transversal

parallel lines are cut by a	Using scale to analyze similar
transversal, and the angle-angle	triangles
criterion for similarity of triangles.	Identifying similar triangles

4.2 Understand and apply the Pythagorean Theorem

Outcome	Quests	Content
Analyze and justify an informal	The Pythagorean	Identifying the hypotenuse,
proof of the Pythagorean Theorem	theorem & its converse	right triangles
and its converse.		Identifying right triangles,
		Pythagorean theorem
		Pythagorean triples
Apply the Pythagorean Theorem to	Apply the Pythagorean	Pythagorean theorem: missing
determine unknown side lengths in	theorem	short side
right triangles in real-world and		Pythagorean theorem: missing
mathematical problems in two and		hypotenuse
three dimensions.		Pythagorean theorem: missing
		side
		Pythagorean theorem in 2-D &
		3-D
Apply the Pythagorean Theorem to	Distance between two	Finding the distance between
find the distance between two	points	two points
points in a coordinate system.		

4.3 Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres

Outcome	Quests	Content
Solve real-world and mathematical	Volume: cones,	Volume: cones
problems involving volumes of	cylinders & spheres	Volume: cylinders
cones, cylinders, and spheres.		Volume: spheres

5 Statistics and Probability

5.1 Investigate patterns of association in bivariate data

Outcome	Quests	Content
Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering; outliers; positive, negative, or no association; and linear association and nonlinear association.	Use & interpret scatter plots	Using & interpreting scatter plots
Understand that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.	Estimate the line of best fit	Estimating the line of best fit
Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept.	Interpret the line of best fit	Interpreting the line of best fit
Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables.	Two-way tables	Constructing & interpreting two-way tables

For more information about Mathletics, contact our friendly team.

www.mathletics.com/contact

