Mathletics Tennessee Program of Studies

 Skill Quests

Grades 3-6
July, 2022

Mathletics

Tennessee Program of Studies Understanding, Practice and Fluency (UPF) December 2021
Grade 3 5
1 Operations and Algebraic Thinking 5
1.1 Represent and solve problems involving multiplication and division 5
1.2 Understand properties of multiplication and the relationship between multiplication and division 5
1.3 Multiply and divide within 100 6
1.4 Solve problems involving the four operations and identify and explain patterns in arithmetic 6
2 Number and Operations in Base Ten 7
2.1 Use place value understanding and properties of operations to perform multi-digit arithmetic 7
3 Number and Operations - Fractions 8
3.1 Develop understanding of fractions as numbers 8
4 Measurement and Data 10
4.1 Solve problems involving measurement and estimation of intervals of time, liquid volumes, and masses of objects 10
4.2 Represent and interpret data 10
4.3 Geometric measurement: understand and apply concepts of area and relate area to multiplication and to addition 11
4.4 Geometric measurement: recognize perimeter as an attribute of plane figures and distinguish between linear and area measures 12
5 Geometry 13
5.1 Reason about shapes and their attributes 13
Grade 4 14
1 Operations and Algebraic Thinking 14
1.1 Use the four operations with whole numbers to solve problems 14
1.2 Gain familiarity with factors and multiples 14
1.3 Generate and analyze patterns 15
2 Number and Operations in Base Ten 16
2.1 Generalize place value understanding for multidigit whole numbers 16
2.2 Use place value understanding and properties of operations to perform multi-digit arithmetic 16
3 Number and Operations - Fractions 18
3.1 Extend understanding of fraction equivalence and comparison 18
3.2 Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers. 18
3.3 Understand decimal notation for fractions and compare decimal fractions. 19
4 Measurement and Data 20
4.1 Estimate and solve problems involving measurement. 20
4.2 Represent and interpret data 20
4.3 Geometric measurement: understand concepts of angle and measure angles 20
5 Geometry 22
5.1 Draw and identify lines and angles and classify shapes by properties of their lines and angles 22
Grade 5 23
1 Operations and Algebraic Thinking 23
1.1 Write and interpret numerical expressions 23
1.2 Analyze patterns and relationships. 23
2 Number and Operations in Base Ten. 24
2.1 Understand the place value system 24
2.2 Perform operations with multi-digit whole numbers and with decimals to hundredths 24
3 Number and Operations - Fractions 26
3.1 Use equivalent fractions as a strategy to add and subtract fractions 26
3.2 Apply and extend previous understandings of multiplication and division to multiply and divide fractions 26
4 Measurement and Data 28
4.1 Convert like measurement units within a given measurement system from a larger unit to a smaller unit. 28
4.2 Represent and interpret data 28
4.3 Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition 28
5 Geometry 30
5.1 Graph points on the coordinate plane to solve real-world and mathematical problems 30
5.2 Classify two-dimensional figures into categories based on their properties. 30
Grade 6 31
1 Ratios and Proportional Relationships 31
1.1 Understand ratio concepts and use ratio reasoning to solve problems 31
2 The Number System 32
2.1 Apply and extend previous understandings of multiplication and division to divide fractions by fractions 32
2.2 Compute fluently with multi-digit numbers and find common factors and multiples 32
2.3 Apply and extend previous understandings of numbers to the system of rational numbers 33
3 Expressions and Equations 35
3.1 Apply and extend previous understandings of arithmetic to algebraic expressions 35
3.2 Reason about and solve one-variable equations and inequalities 36
3.3 Represent and analyze quantitative relationships between dependent and independent variables 37
4 Geometry 38
4.1 Solve real-world and mathematical problems involving area, surface area, and volume 38
5 Statistics and Probability 39
5.1 Develop understanding of statistical variability 39
5.2 Summarize and describe distributions 39

Grade 3

1 Operations and Algebraic Thinking

1.1 Represent and solve problems involving multiplication and division

Outcome	Quests	Content
3.OA.A. 1 Interpret the factors and products in whole number multiplication equations.	Introduction to multiplication	Multiplying using arrays \& repeated addition
3.OA.A. 2 Interpret the dividend, divisor, and quotient in whole number division equations.	Introduction to division	Dividing by sharing (up to 50)
		Dividing by grouping (up to 50)
		Creating \& solving problems involving equal groups
		Using repeated subtraction to divide
3.OA.A. 3 Multiply and divide within 100 to solve contextual problems, with unknowns in all positions, in situations involving equal groups, arrays, and measurement quantities using strategies based on place value, the properties of operations, and the relationship between multiplication and division.	Multiplication \& division problems	Multiplication problems: fair share/equal grouping
		Multiplication/division problems: arrays
3.OA.A. 4 Determine the unknown whole number in a multiplication or division equation relating three whole numbers within 100.	Multiply \& divide: finding the unknown	Multiplying \& dividing: finding the unknown

1.2 Understand properties of multiplication and the relationship between multiplication and division

Outcome	Quests	Content
3.OA.B.5 Apply properties of operations as strategies to multiply and divide.	Multiplication properties	Multiplication properties
3.OA.B.6 Understand division as an unknown-factor problem.	Division: unknown- factor problems	Understand division as an unknown-factor problem

1.3 Multiply and divide within 100

Outcome	Quests	Content
3.OA.C. 7 Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division or properties of operations. By the end of 3rd grade, know from memory all products of two one-digit numbers and related division facts.	Multiplication \& division facts	Multiplication facts: 2, 4, 8
		Multiplication facts: 5, 10
		Multiplication facts: 3, 6, 9
		Multiplication facts: 7
		Recalling multiplication facts to 5×5
		Recalling multiplication facts to 10×10
		Division facts: 2, 4, 8
		Division facts: 5,10
		Division facts: 3, 6, 9
		Division facts: 7

1.4 Solve problems involving the four operations and identify and explain patterns in arithmetic

Outcome	Quests	Content
3.OA.D. 8 Solve two-step contextual problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.	2-step word problems: 4 operations	2-step word problems with addition \& subtraction
		Solving 2-step word problems with the 4 operations
3.OA.D. 9 Identify arithmetic patterns (including patterns in the addition and multiplication tables) and explain them using properties of operations.	Number patterns	Identifying \& creating number patterns
		Identifying odd \& even number patterns
		Exploring number patterns in tables \& charts

2 Number and Operations in Base Ten

2.1 Use place value understanding and properties of operations to perform multidigit arithmetic

Outcome	Quests	Content
3.NBT.A. 1 Round whole numbers to the nearest 10 or 100 using understanding of place value.	Round to the nearest$10 \text { or } 100$	Rounding numbers up to 1000 to the nearest 100
		Rounding numbers up to 1000 to the nearest 10
3.NBT.A. 2 Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.	Add \& subtract within1000	Add \& subtract up to 3-digits: number line
		Add \& subtract up to 3-digits: jump strategy
		Add \& subtract two 2-digits: place value blocks
		Add \& subtract up to 3-digits: expanded form
		Add \& subtract two 2-digit numbers: compensation
3.NBT.A. 3 Multiply one-digit whole numbers by multiples of 10 in the range 10-90 using strategies based on place value and properties of operations.	Multiply by a multiple of 10	Multiplying by a multiple of 10

3 Number and Operations - Fractions

3.1 Develop understanding of fractions as numbers

Outcome	Quests	Content
3.NF.A. 1 Understand a fraction, 1/b , as the quantity formed by 1 part when a whole is partitioned into b equal parts (unit fraction); understand a fraction a / b as the quantity formed by a parts of size $1 / b$.	Introduction to fractions	Introducing the numerator \& denominator
		Introducing eighths
		Halves, quarters \& eighths of objects or shapes
		Halves, thirds or quarters of shapes: partitioning
		Introducing sixths
		Thirds \& sixths of objects, shapes \& sets
3.NF.A.2a Represent a fraction $1 / b$ on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts. Recognize that each part has size $1 / b$ and that the endpoint locates the number $1 / b$ on the number line.	Locate unit fractions on a number line	Locating unit fractions on a number line
3.NF.A.2b Represent a fraction a / b on a number line diagram by marking off a lengths $1 / b$ from 0 . Recognize that the resulting interval has size a / b and that its endpoint locates the number a / b on the number line.	Locate fractions on a number line	Locating fractions on a number line
3.NF.A.3a Understand two fractions as equivalent (equal) if they are the same size or the same point on a number line.	Investigate equivalent fractions	Investigating equivalent fractions
3.NF.A.3b Recognize and generate simple equivalent fractions and explain why the fractions are equivalent using a visual fraction model.	Find simple equivalent fractions	Recognize \& generate simple equivalent fractions
3.NF.A.3c Express whole numbers as fractions and recognize fractions that are equivalent to whole numbers.	Whole numbers as fractions	Express \& recognize whole numbers as fractions
3.NF.A.3d Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when	Compare fractions	Comparing fractions: same numerator or denominator

the two fractions refer to the same whole. Use the symbols $>,=$, or $<$ to show the relationship and justify		
the conclusions.		

4 Measurement and Data

4.1 Solve problems involving measurement and estimation of intervals of time, liquid volumes, and masses of objects

Outcome	Quests	Content
3.MD.A. 1 Tell and write time to the nearest minute and measure time intervals in minutes. Solve contextual problems involving addition and subtraction of time intervals in minutes.	Tell \& write time to the minute	Telling time to the minute, digital \& analog
		Calculating elapsed time
		Using timetables
3.MD.A. 2 Measure the mass of objects and liquid volume using standard units of grams (g), kilograms (kg), milliliters (ml), and liters (I). Estimate the mass of objects and liquid volume using benchmarks.	Liquid volume	Estimating, comparing \& measuring in liters
		Liquid volume: milliliters
		Solving word problems involving liquid volume
	Mass	Mass: kilograms
		Mass: grams
		Mass: measuring in grams \& kilograms
		Solving 1-step word problems involving mass

4.2 Represent and interpret data

Outcome	Quests	Content
3.MD.B.3 Draw a scaled pictograph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step "how many more" and "how many less" problems using information presented in scaled graphs.	 bar graphs	Reading \& representing data: scaled pictograph
3.MD.B.4 Generate measurement data by measuring lengths using dulers marked with halves and scaled bar graph fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units: whole numbers, halves, or quarters.	Represent \& read line plots	Representing \& reading line plots

4.3 Geometric measurement: understand and apply concepts of area and relate area to multiplication and to addition

Outcome	Quests	Content
3.MD.C.5a Understand that a square with side length 1 unit, called "a unit square," is said to have "one square unit" of area and can be used to measure area.	Estimate area with tiling	Estimating area with tiling
3.MD.C.5b Understand that a plane figure which can be covered without gaps or overlaps by n unit squares is said to have an area of n square units.	Measure area with unit squares	Measuring area with unit squares
3.MD.C.6 Measure areas by counting unit squares (square centimeters, square meters, square inches, square feet, and improvised units).	Measure area with formal units	Introducing formal units for area
3.MD.C.7a Find the area of a rectangle with whole-number side lengths by tiling it and show that the area is the same as would be found by multiplying the side lengths.	Find the area with repeated addition rectangles the area of	
3.MD.C.7b Multiply side lengths to find areas of rectangles with whole number side lengths in the context of solving real-world and mathematical problems and represent whole-number products as rectangular areas in mathematical reasoning.	Area problems: multiplication	Finding the area of rectangles, repeated addition
3.MD.C.7c Use tiling to show in a concrete case that the area of a rectangle with whole-number side lengths a and b + c is the sum of a x b and a x c. Use area models to represent the distributive property in mathematical reasoning.	Find the area using area models	Folving area problems using multiplication
3.MD.C.7d Recognize area as additive. Find areas of rectilinear figures by decomposing them into area of rectangles, area models	Find the area of rectilinear figures adding the areas of the non- overlapping parts, applying this technique to solve real-world problems.	Finding the area of rectilinear figures

4.4 Geometric measurement: recognize perimeter as an attribute of plane figures and distinguish between linear and area measures

Outcome	Quests	Content
3.MD.D.8 Solve real-world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.	Perimeter problems	Finding the perimeter \& area of rectangles
		Relating perimeter \& area
		Introducing perimeter
	Finding the perimeter of rectangles	
	Finding a missing side length given the perimeter	
	Finding the perimeter of polygons	

5 Geometry

5.1 Reason about shapes and their attributes

Outcome	Quests	Content
3.G.A.1 Understand that shapes in different categories may share attributes and that the shared attributes can define a larger category. Recognize rhombuses, rectangles, and squares as examples of quadrilaterals and draw examples of quadrilaterals that do not belong to any of these subcategories.	Shapes \& their attributes	Sorting \& naming quadrilaterals
3.G.A.2 Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the dimensional shapes shing two- whole.	Partition shapes	Partitioning shapes into parts with equal areas

Grade 4

1 Operations and Algebraic Thinking

1.1 Use the four operations with whole numbers to solve problems

Outcome	Quests	Content
4.OA.A. 1 Interpret a multiplication equation as a comparison. Represent verbal statements of multiplicative comparisons as multiplication equations.	Interpret multiplication as a comparison	Describe comparisons using multiplication language
4.OA.A.2 Multiply or divide to solve contextual problems involving multiplicative comparison, and distinguish multiplicative comparison from additive comparison.	Comparison word problems	Solving comparison word problems
4.OA.A.3 Solve multi-step contextual problems posed with whole numbers and having whole- number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the	Word problems: 4 operations	Multi-step reasonableness of answers using mpltiplication/division word mental computation and estimation strategies including rounding.
		Solving division word problems

1.2 Gain familiarity with factors and multiples

Outcome	Quests	Content
4.OA.B.4 Find all factor pairs for a		
whole number in the range 1-100.	prime numbers	Finding multiples: whole numbers up to 100
Recognize that a whole number is a multiple of each of its factors.		Finding factors: whole numbers up to 100
Determine whether a given whole number in the range 1-100 is a multiple of a given one-digit number. Determine whether a given whole number in the range 1-100 is prime or composite.		Prime \& composite numbers

1.3 Generate and analyze patterns

Outcome	Quests	Content
4.OA.C. 5 Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself.	Number \& shape patterns	Generate shape patterns from a given rule
		Generate addition patterns from a given rule
	Generate subtraction patterns from a given rule	
	Generate multiplication patterns from a given rule	

2 Number and Operations in Base Ten

2.1 Generalize place value understanding for multidigit whole numbers

Outcome	Quests	Content
4.NBT.A.1 Recognize that in a multi-digit whole number (less than or equal to $1,000,000$), a digit in one place represents 10 times as much as it represents in the place to its right.	Place value for multi- digit numbers	Generalizing place value understanding
4.NBT.A.2 Read and write multi- digit whole numbers (less than or equal to 1,000,000) using standard form, word form, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place and use the symbols >, $=$ and < to show the relationship.	Read \& write multi- digit numbers	Reading \& writing multi-digit numbers
4.NBT.A.3 Round multi-digit whole numbers to any place (up to and numbers two 6-digit		
including the hundred-thousand		
place) using understanding of place		
value.		

2.2 Use place value understanding and properties of operations to perform multidigit arithmetic

Outcome	Quests	Content
4.NBT.B.4 Fluently add and subtract within 1,000,000 using appropriate strategies and algorithms.	Add multi-digit numbers	Adding multi-digit numbers, no regrouping
	Adding multi-digit numbers, regrouping	
	Subtract multi-digit numbers	Subtracting multi-digit numbers, no regrouping
Subtracting multi-digit numbers, regrouping		
4.NBT.B.5 Multiply a whole number of up to four digits by a one-digit whole number and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using	Multiply multi-digit numbers	Multiplying multi-digit numbers, algorithm
		Multiplying multi-digit numbers using place value
		Multiplying multi-digit numbers, area model

equations, rectangular arrays, and/or area models.		
4.NBT.B.6 Find whole-number		
quotients and remainders with up		
to four-digit dividends and one-	Divide multi-digit numbers digit divisors, using strategies based on place value, the	
properties of operations, and/or the		Dividing numbers, place value blocks
relationship between multiplication and division. Illustrate and explain the calculation by using equations,		Dividing numbers, area model strategy numbers, place value rectangular arrays, and/or area
sodels.		Introducing remainders in division

3 Number and Operations - Fractions

3.1 Extend understanding of fraction equivalence and comparison

Outcome	Quests	Content
4.NF.A. 1 Explain why a fraction a / b is equivalent to a fraction $a \times n / b \times n$ or $a \div n / b \div n$ by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.	Fraction equivalence	Equivalent fractions with models
		Equivalent fractions with multiplication
4.NF.A. 2 Compare two fractions with different numerators and different denominators by creating common denominators or common numerators or by comparing to a benchmark fraction such as $1 / 2$. Recognize that comparisons are valid only when the two fractions refer to the same whole. Use the symbols >, =, or < to show the relationship and justify the conclusions.	Compare fractions	Compare fractions using models
		Compare fractions, different numerator/denominator
		Compare fractions using common denominators

3.2 Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers

Outcome	Quests	Content
4.NF.B.3a Understand addition and subtraction of fractions as joining and separating parts referring to the same whole.	Understand adding/subtracting fractions	Adding unit fractions, same denominators: models
	Adding fractions, same denominator	
Subtracting fractions, same denominator		
Adding \& subtracting fractions, same denominator		
4.NF.B.3b Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions by using a visual fraction model.	Decompose fractions	Decomposing fractions

4.NF.B.3c Add and subtract mixed numbers with like denominators by replacing each mixed number with an equivalent fraction and/or by using properties of operations and the relationship between addition and subtraction.	Add \& subtract mixed numbers	Adding mixed numbers, same denominator

3.3 Understand decimal notation for fractions and compare decimal fractions

Outcome	Quests	Content
4.NF.C.5 Express a fraction with denominator 10 as an equivalent fraction with denominator 100, and use this technique to add two fractions with respective denominators 10 and 100.	Add fractions: 100	Adding fractions with denominators of 10 \& 100
4.NF.C.6 Read and write decimal notation for fractions with denominators 10 or 100. Locate these decimals on a number line.	Fractions as decimals	
4.NF.C.7 Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Use the symbols $>,=$, or < to show the relationship and justify the conclusions.	Compare decimals to hundredths	Comparing \& ordering decimals to hundredths

4 Measurement and Data

4.1 Estimate and solve problems involving measurement

Outcome	Quests	Content
4.MD.A. 1 Measure and estimate to determine relative sizes of measurement units within a single system of measurement involving length, liquid volume, and mass/weight of objects using customary and metric units.	Convert units of measure	Units of length: $\mathrm{mm} / \mathrm{cm} / \mathrm{m} / \mathrm{km}$
		Units of mass: $\mathrm{g} / \mathrm{kg} \mathrm{\&} \mathrm{oz/lb}$
		Units of time: $\mathrm{sec} / \mathrm{min} / \mathrm{hr}$ \& day/week/year
		Units of volume \& capacity: mL / L
4.MD.A. 3 Know and apply the area and perimeter formulas for	Area \& perimeter	Finding the area of a rectangle, formula
rectangles in realworld and mathematical problems.		Finding the perimeter of a rectangle, formula

4.2 Represent and interpret data

Outcome	Quests	Content
4.MD.B.4 Make a line plot to display	Fractions on a line plot	Fractions on a line plot
a data set of measurements in		
fractions of a unit $(1 / 2,1 / 4,1 / 8)$.		
Use operations on fractions for this grade to solve problems involving information presented in line plots.		

4.3 Geometric measurement: understand concepts of angle and measure angles

Outcome	Quests	Content
4.MD.C.5b Understand that an angle that turns through $1 / 360$ of a circle is called a "one-degree angle," and can be used to measure angles. An angle that turns through n one-degree angles is said to have an angle measure of n degrees and represents a fractional portion of the circle.	Angle measurements in a circle	Using a circular protractor to measure angles
4.MD.C.6 Measure angles in whole- number degrees using a protractor. Sketch angles of specified measure.	Measure \& estimate angles	Measuring \& estimating angles
4.MD.C.7 Recognize angle measure as additive. When an angle is	Problems with adjacent angles	Solving problems with adjacent angles

decomposed into non-overlapping		
parts, the angle measure of the		
whole is the sum of the angle		
measures of the parts. Solve		
addition and subtraction problems		
to find unknown angles on a		
diagram in real-world and		
mathematical problems.		

5 Geometry

5.1 Draw and identify lines and angles and classify shapes by properties of their lines and angles

Outcome	Quests	Content		
4.G.A.1 Draw points, lines, line segments, rays, angles (right, acute, obtuse, straight, reflex), and perpendicular and parallel lines. Identify these in two dimensional figures.	Spatial features in 2-D figures			
4.G.A.2 Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines or the presence or absence of angles of a specified size.	Classify 2-D figures			
Recognize right triangles as a				
category and identify right				
triangles.			\quad	Labeling points \& lines
:---				

Grade 5

1 Operations and Algebraic Thinking

1.1 Write and interpret numerical expressions

Outcome	Quests	Content
5.OA.A. 1 Use parentheses and/or brackets in numerical expressions and evaluate expressions having these symbols using the conventional order (Order of Operations).	Grouping symbols	Order of operations with grouping symbols
5.OA.A.2 Write simple expressions that record calculations with numbers and interpret numerical expressions without evaluating them.	Write \& interpret expressions	Writing \& interpreting expressions without solving

1.2 Analyze patterns and relationships

Outcome	Quests	Content
5.OA.B.3a Identify relationships between corresponding terms in two numerical patterns.	Numerical patterns	Comparing numerical patterns
5.OA.B.3b Form ordered pairs consisting of corresponding terms from two numerical patterns and number pattern table		
graph the ordered pairs on a coordinate plane.	Graph ordered pairs, numerical patterns	Graphing ordered pairs from numerical patterns

2 Number and Operations in Base Ten

2.1 Understand the place value system

| Outcome | Quests | Content |
| :--- | :--- | :--- |$|$| 5.NBT.A.1 Recognize that in a
 multi-digit number, a digit in one
 place represents 10 times as much
 as it represents in the place to its
 right and $1 / 10$ of what it represents
 in the place to its left. | The place value system |
| :--- | :--- |

2.2 Perform operations with multi-digit whole numbers and with decimals to hundredths

Outcome	Quests	Content
5.NBT.B.5 Fluently multiply multi- digit whole numbers (up to three- digit by four-digit factors) using appropriate strategies and algorithms.	Multiply multi-digit numbers, algorithm	Multiplying multi-digit numbers, algorithm
5.NBT.B.6 Find whole-number quotients and remainders of whole numbers with up to four-digit dividends and two-digit divisors,	Divide multi-digit numbers	Using facts to divide 2-digit multiples of 10
		Dividing by subtracting partial products

using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Ilustrate and explain the calculation by using equations, rectangular arrays, and/or area models.		Dividing multi-digit numbers, algorithm
5.NBT.B.7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between operations; assess the reasonableness of answers using estimation strategies.	Operations with decimals multi-digit numbers,	adding decimals to hundredths, algorithm
	Subtracting decimals using mental strategies	
	Subtracting decimals to hundredths, algorithm	
	Multiplying decimals \& whole numbers	
	Multiplying decimals to hundredths, algorithm	
	Multiplying decimals using mental strategies	
	Multiplicative relationships with decimals	
	 decimals, mental strategies	
	 decimals, algorithm	

3 Number and Operations - Fractions

3.1 Use equivalent fractions as a strategy to add and subtract fractions

Outcome	Quests	Content
5.NF.A. 1 Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators.	Add \& subtract fractions	Adding fractions \& mixed numbers
		Subtracting fractions \& mixed numbers
		Adding \& subtracting fractions \& mixed numbers
		Adding fractions, proper \& improper
		Adding mixed numbers
		Subtracting fractions, proper \& improper
		Subtracting mixed numbers
5.NF.A. 2 Solve contextual problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers.	Add/subtract fraction word problems	Solving word problems: fractions \& mixed numbers
		Solving fraction word problems

3.2 Apply and extend previous understandings of multiplication and division to multiply and divide fractions

Outcome	Quests	Content
5.NF.B. 3 Interpret a fraction as division of the numerator by the denominator.	Fractions as division	Interpreting fractions as division
5.NF.B.4a Interpret the product a / b $\times \mathrm{q}$ as $\mathrm{a} \times(\mathrm{q} \div \mathrm{b})$ (partition the	Multiply fractions	Multiplying a fraction by a whole number
quantity q into b equal parts and then multiply by a). Interpret the product $a / b \times q$ as $(a \times q) \div b$ (multiply a times the quantity q and then partition the product into b equal parts).		Multiplying a fraction by a fraction
5.NF.B.4b Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side	Area of a rectangle, fractional sides	Find the area of a rectangle with fractional sides

lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles and represent fraction products as rectangular areas.		
5.NF.B.5a Compare the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication.	 factors	Comparing products \& factors
5.NF.B.5b Explain why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case); explain why multiplying a given number by a fraction less than 1 results in a product less than the given number; and relate the	Effects of multiplying fractions	Interpreting multiplying fractions as scaling
principle of fraction equivalence a/b $=(a x n) /(b x$ the effect of multiplying a/b by 1.		
5.NF.B.6 Solve real-world problems involving multiplication of fractions and mixed numbers by using visual fraction models or equations to represent the problem.	Multiply fractions word problems	Word problems: multiply fractions \& mixed numbers
5.NF.B.7a Interpret division of a unit fraction by a non-zero whole number and compute such quotients.	Divide unit fractions by whole numbers	Dividing unit fractions by whole numbers, models
5.NF.B.7b Interpret division of a whole number by a unit fraction and compute such quotients.	Divide whole numbers by unit fractions	Dividing whole numbers by unit fractions, models
5.NF.B.7c Solve real-world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions by using visual fraction models and equations to represent the problem.	Divide unit fractions word problems	Word problems: divide unit fractions/whole numbers

4 Measurement and Data

4.1 Convert like measurement units within a given measurement system from a larger unit to a smaller unit

Outcome	Quests	Content
5.MD.A. 1 Convert customary and metric measurement units within a single system by expressing measurements of a larger unit in terms of a smaller unit. Use these conversions to solve multi-step real-world problems involving distances, intervals of time, liquid volumes, masses of objects, and money (including problems involving simple fractions or decimals).	Convert measurement units	Converting between standard metric units of length
		Converting between standard metric units of mass
		Converting metric units of volume \& capacity
		Converting between customary units of length
		Converting customary units of volume \& capacity
		Converting between customary units of mass
		Word problems: measurement conversions

4.2 Represent and interpret data

Outcome	Quests	Content
5.MD.B.2 Make a line plot to display a data set of measurements in fractions of a unit $(1 / 2,1 / 4,1 / 8)$.	Fraction problems: line plots	Represent \& interpret measurements: line plots
Use operations on fractions for this grade to solve problems involving information presented in line plots.		

4.3 Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition

Outcome	Quests	Content
5.MD.C.4 Measure volume by counting unit cubes, using cubic centimeters, cubic inches, cubic feet, and improvised units.	Measure volume with unit cubes	Measuring volume: unit cubes \& cubic centimeters
5.MD.C.5a Find the volume of a right rectangular prism with whole-	Volume: rectangular prisms	 multiplicative strategies

number side lengths by packing it with unit cubes and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent whole- number products of three factors as volumes.		
5.MD.C. 5 b Know and apply the formulas $\mathrm{V}=\mathrm{I} \times \mathrm{w} \times \mathrm{h}$ and $\mathrm{V}=\mathrm{B} \times \mathrm{h}$ (where B represents the area of the base) for rectangular prisms to find volumes of right rectangular prisms with whole number edge lengths in the context of solving real-world and mathematical problems.	Volume formulas: rectangular prism	Applying volume formulas for rectangular prisms
5.MD.C.5c Recognize volume as additive. Find volumes of solid figures composed of two non- overlapping right rectangular prisms by adding the volumes of the non-overlapping parts, applying this technique to solve real-world problems.	Volume: composite rectangular prisms	Volume of composite rectangular prisms

5 Geometry

5.1 Graph points on the coordinate plane to solve real-world and mathematical problems

Outcome	Quests	Content
5.G.A.1 Graph ordered pairs and label points using the first quadrant of the coordinate plane. Understand in the ordered pair that the first number indicates the horizontal distance traveled along the x-axis from the origin and the second number indicates the vertical distance traveled along the y-axis, with the convention that the names of the two axes and the coordinates correspond.		Introducing the coordinate plane
5.G.A.2 Represent real-world and mathematical problems by graphing points in the first quadrant of the coordinate plane and interpret coordinate values of points in the context of the situation.	Graph in the first quadrant	Graphing in the first quadrant

5.2 Classify two-dimensional figures into categories based on their properties

Outcome	Quests	Content
5.G.B.3 Classify two-dimensional figures in a hierarchy based on properties. Understand that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category.	Classify 2-D figures, properties	Classifying 2-D figures in a hierarchy
		Classifying quadrilaterals

Grade 6

1 Ratios and Proportional Relationships

1.1 Understand ratio concepts and use ratio reasoning to solve problems

Outcome	Quests	Content
6.RP.A.1 Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities.	Introduction to ratios	 writing ratios
6.RP.A.2 Understand the concept of a unit rate a/b associated with a ratio a:b with b $\neq 0$. Use rate language in the context of a ratio relationship.	Introduction to unit rate	 making comparisons
6.RP.A.3a Make tables of equivalent ratios relating quantities with whole number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.		Ratio tables
6.RP.A.3b Solve unit rate problems including those involving unit pricing and constant speed.	Unit rate	Creating tables of equivalent ratios
Plotting coordinates from ratio tables		
6.RP.A.3c Find a percent of a quantity as a rate per 100; solve problems involving finding the whole, given a part and the percent.	Percent of a quantity	Convert measurements
6.RP.A.3d Use ratio reasoning to convert customary and metric measurement units (within the same system); manipulate and transform units appropriately when multiplying or dividing quantities.	Converting measurement units using ratios	
		Solving unit rate problems for given time periods involving unit rate problems pricing
Expressing rates as a percent		
finding percent problems:		

2 The Number System

2.1 Apply and extend previous understandings of multiplication and division to divide fractions by fractions

Outcome	Quests	Content
6.NS.A.1 Interpret and compute quotients of fractions, and solve contextual problems involving division of fractions by fractions.	Divide fractions	Dividing a fraction by a positive integer
Dividing a positive integer by a fraction		
	Dividing fractions \& mixed numbers	
	Solving word problems: division of fractions	

2.2 Compute fluently with multi-digit numbers and find common factors and multiples

Outcome	Quests	Content
6.NS.B. 2 Fluently divide multi-digit numbers using a standard algorithm.	Divide multi-digit numbers, algorithm	Divide 4-digit by 2-digit numbers, no remainder
		Divide 4-digit by 2-digit numbers, with remainders
		Divide 4-digit by 2-digit numbers
6.NS.B.3 Fluently add, subtract, multiply, and divide multi-digit decimals using a standard algorithm for each operation.	Operations with multidigit decimals	Adding decimals using the standard algorithm
		Subtracting decimals using the standard algorithm
		Multiplying decimals using the standard algorithm
		Dividing decimals using the standard algorithm
		Word problems: adding \& subtracting decimals
		Word problems: multiplying \& dividing decimals
6.NS.B. 4 Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole	GCF \& LCM	Greatest common factor
		Least common multiple
		Solving word problems: factors \& multiples

```
numbers less than or equal to 12.
Use the distributive property to
express a sum of two whole
numbers 1-100 with a common
factor as a multiple of a sum of two
whole numbers with no common
factor.
```


2.3 Apply and extend previous understandings of numbers to the system of rational numbers

Outcome	Quests	Content
6.NS.C. 5 Understand that positive and negative numbers are used together to describe quantities having opposite directions or values; use positive and negative numbers to represent quantities in realworld contexts, explaining the meaning of 0 in each situation.	Positive \& negative numbers	Investigating \& interpreting integers
6.NS.C.6a Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself.	Opposites on the number line	Opposites on the number line
6.NS.C.6b Understand signs of numbers in ordered pairs as indicating locations in quadrants of the coordinate plane; recognize that when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes.	Graph in the 4 quadrants	Graphing coordinates in the 4 quadrants
		Graphing coordinates across the x-axis \& y-axis
6.NS.C.6c Find and position integers and other rational numbers on a horizontal or vertical number line diagram; find and position pairs of integers and other rational numbers on a coordinate plane.	Graph rational numbers	Placing rational numbers on the number line
		Graphing rational numbers on the coordinate plane
6.NS.C.7a Interpret statements of inequality as statements about the relative position of two numbers on a number line diagram.	Compare rational numbers	Comparing integers
		Comparing rational numbers
6.NS.C.7b Write, interpret, and explain statements of order for rational numbers in real-world contexts.	Order rational numbers	Exploring the everyday language of integers
		Statements of order: rational numbers

6.NS.C.7c Understand the absolute value of a rational number as its distance from 0 on the number line and distinguish comparisons of absolute value from statements about order in a real-world context.	Introduction to absolute value	Introducing absolute value
6.NS.C.8 Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.	Solve problems by graphing: 4 quadrants	Solving problems by graphing in the 4 quadrants
		Find the distance between 2 points, absolute value

3 Expressions and Equations

3.1 Apply and extend previous understandings of arithmetic to algebraic expressions

Outcome	Quests	Content
6.EE.A.1 Write and evaluate numerical expressions involving whole-number exponents.	Numerical expressions with exponents	Writing numerical expressions with exponents
	Evaluating numerical expressions with exponents	
6.EE.A.2a Write expressions that record operations with numbers and with variables.	Write expressions: numbers \& variables	Writing expressions with numbers \& variables
6.EE.A.2b Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity.	Parts of an expression	Identifying parts of an expression
6.EE.A.2c Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole number exponents, in the conventional order when there are no parentheses to specify	Evaluate algebraic expressions a particular order (Order of Operations).	Evaluating algebraic expressions
6.EE.A.3 Apply the properties of operations (including, but not limited to, commutative, associative, and distributive properties) to generate equivalent expressions. The distributive property is prominent here.	Praluating expressions using order of operations	
6.EE.A.4 Identify when expressions are equivalent.	Equivalent expressions	Identifying equivalent expressions

3.2 Reason about and solve one-variable equations and inequalities

Outcome	Quests	Content
6.EE.B. 5 Understand solving an equation or inequality is carried out by determining if any of the values from a given set make the equation or inequality true. Use substitution to determine whether a given number in a specified set makes an equation or inequality true.	Test solutions	Testing solutions: equations
		Testing solutions: inequalities
6.EE.B. 6 Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.	Write algebraic expressions	Writing algebraic expressions
6.EE.B. 7 Solve real-world and mathematical problems by writing and solving one step equations of the form $\mathrm{x}+\mathrm{p}=\mathrm{q}$ and $\mathrm{px}=\mathrm{q}$ for cases in which p, q, and x are all nonnegative rational numbers.	Solve 1-step equations	Preserving equality in equations
		Solving simple linear equations using models
		1-step equations: add/subtract, positive integers
		1-step equations: add/subtract, rational numbers
		1-step equations: multiply, positive integers
		1-step equations: multiply, rational numbers
		1-step equations: division, rational numbers
		Writing \& solving 1-step equations
6.EE.B. 8 Interpret and write an inequality of the form $x>c$ or $x<c$ which represents a condition or constraint in a real-world or mathematical problem. Recognize that inequalities have infinitely many solutions; represent solutions of inequalities on number line diagrams.	Write \& represent inequalities	Writing inequalities
		Represent algebraic inequalities on a number line

3.3 Represent and analyze quantitative relationships between dependent and independent variables

Outcome	Quests	Content
6.EE.C.9a Write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable.	 dependent variables	Independent \& dependent variables

4 Geometry

4.1 Solve real-world and mathematical problems involving area, surface area, and volume

Outcome	Quests	Content
6.G.A. 1 Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; know and apply these techniques in the context of solving real-world and mathematical problems.	Area: triangles \& quadrilaterals	Finding the area of a right triangle
		Investigating the area of special quadrilaterals
		Real-world area problems: special quadrilaterals
6.G.A. 2 Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Know and apply the formulas $V=I w h$ and $V=B h$ where B is the area of the base to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.	Volume: rectangular prisms, formula	Volume: rectangular prisms, fraction edge lengths
6.G.A. 3 Draw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side that joins two vertices (vertical or horizontal segments only). Know and apply these techniques in the context of solving real-world and mathematical problems.	Polygons in the coordinate plane	Drawing polygons in the coordinate plane
6.G.A. 4 Represent threedimensional figures using nets	Surface area	Connecting 3-D objects with their nets
made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving real-world and mathematical problems.		Calculating the surface area of rectangular prisms

5 Statistics and Probability

5.1 Develop understanding of statistical variability

Outcome	Quests	Content
6.SP.A.1 Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers.	Statistical questions	Evaluating statistical questions
6.SP.A.2 Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center (mean, median, mode), spread (range), and overall shape.	Shape of data distribution	Introducing the shape of data distribution
6.SP.A.3 Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.	 variation	

5.2 Summarize and describe distributions

Outcome	Quests	Content
6.SP.B. 4 Display a single set of numerical data using dot plots (line plots), box plots, pie charts and stem plots.	Data displays	Constructing data displays
		Reading \& interpreting data in a dot plot
		Reading \& interpreting data in a histogram
		Reading \& interpreting box plots
6.SP.B. 5 Summarize numerical data sets in relation to their context.	Summarize numerical data	Summarizing numerical data
6.SP.B.5a Report the number of observations.	Report observations	Reporting observations in a data display
6.SP.B.5b Describe the nature of the attribute under investigation, including how it was measured and its units of measurement.	Attributes of data	Describing attributes of data in data displays
6.SP.B.5c Give quantitative measures of center (median and/or	Calculate measures of center \& variation	Calculating the mean absolute deviation

mean) and variability (range) as well as describing any overall pattern with reference to the context in which the data were gathered.		Calculating the median
		Calculating the mean
		Identifying clusters, gaps \& outliers
		Identifying skewed \& symmetrical sets of data
6.SP.B.5d Relate the choice of measures of center to the shape of the data distribution and the context in which the data were gathered.	Relate measures of center \& variation	Choosing appropriate measures of center/variation
		Comparing measures of center \& variation

Mathletics

For more information about Mathletics, contact our friendly team.

www.mathletics.com/contact

