Mathletics 3P Learning Progressions Understanding Practice and Fluency (UPF)

Levels 7 - 8 | Australia

June, 2021

Mathletics

3P Learning Progressions Understanding, Practice and Fluency (UPF) June, 2021

Contents

I	Level 7	2
1	Number and algebra	2
2	Measurement	18
3	Geometry	21
4	Data	26
5	Chance and Probability	30
II	Level 8	33
6	Number and Algebra	33
7	Measurement	41
8	Geometry	49
9	Data	52
10) Chance and Probability	53

Part I Level 7

1 Number and algebra

		Integers	
		Working with integers	
Learning Journey	Steps	Spine Nodes	Subnodes
Compare, order, add and subtract integers	1	Describing the direction and mag- nitude of integers	• describe the direction and magni- tude of integers when applied to the number line
	2	Comparing the relative value of integers, including recording the comparison by using the sym- bols < and >	• compare the relative value of integers, including recording the comparison by using the symbols and < and > including negative integers
		Ordering integers	 order integers of any size in ascend- ing and descending order including negative numbers
	3	Understanding addition and sub- traction of integers pictorially	• understand addition and subtrac- tion of integers pictorially
		Understanding addition and sub- traction of integers symbolically	• understand addition and subtrac- tion of integers symbolically
	4	Representing addition and sub- traction on a horizontal or vertical number line diagram	• represent addition and subtraction on a horizontal or vertical number line diagram
	5	Adding and subtracting negative integers	• add and subtract negative integers
		Laws of multiplication and division	on
Laws of multiplication and division	1	Using factors of a number to aid mental computation involving multiplication and division	• use factors of a number to aid men- tal computation involving multiplica- tion
	2	Showing the connection between division and multiplication, in- cluding where there is a remain- der	• show the connection between di- vision and multiplication, including where there is a remainder
	3	Applying the distributive law to aid in mental computation to ex- pand expressions containing 2 terms within the grouping sym- bols	• apply the distributive law to aid in mental computation to expand ex- pressions containing 2 terms within the grouping symbols
		Applying the commutative law of multiplication to aid mental computation	• apply the commutative law to aid mental computation
		Applying the associative law of multiplication to aid in mental computation	• apply the associative law of mul- tiplication to aid in mental computa- tion

Learning Journey	Step	Spine Nodes	Subnodes
	4	Applying the distributive law to aid in mental computation to ex- pand expressions containing 3 or more terms within the grouping symbols	• apply the distributive law to aid in mental computation to expand ex- pressions containing 3 or more terms within the grouping symbols
	5	Solving problems within a given context by applying the distribu- tive law	• solve problems within a given con- text by applying the distributive law

Number Theory			
		Square and cube roots	
Learning Journey	Steps	Spine Nodes	Subnodes
Working with square roots	1	Finding square roots of perfect square whole numbers only	• find the square roots of perfect square whole numbers up to 100
	2	Finding square roots of non- perfect squares using a calculator	• find the square roots of non-perfect squares using a calculator
	3	Determining between which 2 whole numbers lies the square root of a non-perfect square num- ber up to 100	• determine mentally, between which 2 whole numbers lies the square root of a non-perfect square number up to 100
		Estimating the square root of non-square numbers	• estimate the square root of a non- square number up to 100
			• estimate the square root of a non- square number up to 100 using a number line to estimate
Working with cube roots	3	Determining mentally, between which 2 whole numbers lies the cube root of a non-perfect cube number up to 125	• determine mentally, between which 2 whole numbers lies the cube root of a non-perfect cube number up to 125
		Estimating the cube root of a non- perfect cube number up to 125	• estimate the cube root of a non- perfect cube number up to 125
	1	Finding cube roots of perfect cube whole numbers	• find the cube roots of perfect cube whole numbers up to 125
	2	Finding cube roots of non-perfect cubes using a calculator	• find cube roots of non-perfect cubes using a calculator
Solving problems with square and cube roots	1	Finding square roots of large per- fect square whole numbers from prime factors	• find square roots of large perfect square whole numbers from prime factors
	2	Applying the order of operations to evaluate expressions involving square roots and cube roots, with and without a calculator	• apply the order of operations to evaluate expressions involving square roots and cube roots, with and without a calculator

		Fractions, decimals and percentag	es
		Expressing and comparing fraction	ons
Learning Journey	Steps	Spine Nodes	Subnodes
Fractions: improper and proper fractions	1	Generating equivalent fractions with denominators (denomina- tors 1–100, 1000)	 generate equivalent fractions
	2	Expressing a fraction in its sim- plest form	• determine the highest common fac- tor of a pair of integers
			• express a fraction in its simplest form
	3	Expressing improper fractions as mixed numerals	• express improper fractions as mixed numerals that do not require simplification of the proper fraction
			• express improper fractions as mixed numerals that require simplification of the proper fraction
	4	Expressing mixed numerals as improper fractions	 express mixed numerals as im- proper fractions
Fractions: comparing and ordering	1	Comparing and ordering proper fractions	• compare and order proper fractions where the denominators are not al- ways multiples of the same number
			 record comparisons using =, ≠, <, > ≤, ≥ symbols
	2	Comparing and ordering im- proper fractions	• compare and order improper frac- tions where the denominators are not always multiples of the same number
			 record comparisons using =, ≠, <, > ≤, ≥ symbols
	3	Comparing and ordering proper fractions, improper fractions, and mixed numbers	• compare and order proper frac- tions, improper fractions, and mixed numbers where the denominators are not always multiples of the same number
			 record comparisons using =, ≠, <, > ≤, ≥ symbols
	4	Placing positive and negative fractions, decimals and mixed numbers on a number line in order to compare	• place positive and negative frac- tions, decimals and mixed numbers on a number line in order to compare
		Adding and subtracting fraction	IS
Fractions: adding frac- tions	1	Adding proper fractions with common denominators	• add proper fractions with common denominators
		Adding improper fractions with common denominators	• add improper fractions with com- mon denominators
			 add improper fractions with com- mon denominators expressing an- swers as a mixed numeral
	2	Adding proper fractions with un- like denominators	• add proper fractions with unlike de- nominators
	3	Adding improper fractions with unlike denominators	• add improper fractions with unlike denominators

Learning Journey	Step	Spine Nodes	Subnodes
			 add improper fractions with un- like denominators expressing an- swers as a mixed numeral
Fractions: subtracting fractions	1	Subtracting proper fractions with common denominators	• subtract proper fractions with com- mon denominators
	2	Subtracting improper fractions with common denominators	• subtract improper fractions with common denominators
			• subtract improper fractions with common denominators, expressing answers as a mixed numeral
	3	Subtracting mixed numbers with common denominators	• subtract mixed numbers with com- mon denominators
	4	Subtracting proper fractions with unlike denominators	• subtract proper fractions with un- like denominators
	5	Subtracting improper fractions with unlike denominators	• subtract improper fractions with unlike denominators
			 subtract improper fractions with unlike denominators expressing an- swers as a mixed numeral
		Subtracting mixed numbers with unlike denominators	• subtract mixed numbers with unlike denominators
Fractions: adding and subtracting fractions	1	Performing addition or subtrac- tion with fractions where frac- tions can be in different forms	• perform addition or subtraction with fractions where fractions can be in different forms
	2	Subtracting a fraction from an in- teger	 subtract a fraction from a whole number using written methods
	3	Demonstrating an understanding of adding and subtracting posi- tive fractions and mixed numer- als, with like and unlike denomi- nators, concretely, pictorially and symbolically	• demonstrate an understanding of adding and subtracting positive frac- tions and mixed numerals, with like and unlike denominators, concretely, pictorially and symbolically
	4	Recognising and explaining in- correct operations with fractions	• recognise and explain incorrect op- erations with fractions
	 	/ /ultiplying & dividing fractions/deci	mals
Multiplying decimals & finding quantities	1	Multiplying decimals using a cal- culator	• multiply decimals using a calculator
	2	Multiplying decimals using writ- ten/mental methods	• multiply decimals using men- tal/written methods
	3	Calculating decimals of quantities using a calculator	• calculate decimals of quantities us- ing a calculator
	4	Calculating decimals of quantities using mental/written methods	• calculate decimals of quantities us- ing mental, written and calculator methods

Learning Journey	Step	Spine Nodes	Subnodes
Multiplying fractions & finding quantities	1	Multiplying proper fractions by a whole number greater than 1	• multiply proper fractions by a whole number greater than 1
		Multiplying improper fractions by a whole number greater than 1	• multiply improper fractions by a whole number greater than 1
		Multiplying improper fractions by a whole number greater than 1, expressing answer as a mixed numeral	• multiply improper fractions, ex- pressing answer as a mixed numeral
	2	Multiplying 2 proper fractions	• multiply 2 proper fractions using written methods
	3	Multiplying 2 improper fractions	• multiply improper fractions using written methods
		Multiplying 2 improper fractions, expressing the answer as a mixed numeral	• multiply 2 improper fractions ex- pressing the answer as a mixed nu- meral
	4	Multiplying 2 mixed numerals	• multiply mixed numerals using writ- ten methods
		Multiplying mixed numerals by a whole number greater than 1	• multiply mixed numerals by a whole number greater than 1
	5	Multiplying proper fractions, im- proper fractions and mixed nu- merals using written methods	• multiply proper fractions, improper fractions and mixed numerals using written methods
		Calculating fractions of quantities using mental or written strategies	• calculate fractions of quantities us- ing mental or written strategies
Dividing integers, frac- tions and decimals	1	Dividing positive integers by unit fractions	• divide positive integers by unit frac- tions
	2	Dividing fractions and decimals using a calculator	• divide fractions and decimals using a calculator
	3	Dividing decimals by powers of 10	• divide decimals by powers of 10
Dividing fractions by fractions and integers	1	Dividing a unit fraction by a posi- tive integer	• divide unit fractions by whole num- bers, eg $\frac{1}{3} \div 2 = \frac{1}{6}$
	2	Dividing a positive integer by a proper fraction	• divide a positive integer by a proper fraction
		Dividing a proper fraction by a positive integer	• divide a non-unit proper fraction by a whole number (where the divisor is a factor of the numerator). Use dia- grams for support
			• divide a non-unit proper fraction by any whole number
	3	Dividing a proper fraction by a proper fraction	• divide a proper fraction by a proper fraction

Learning Journey	Step	Spine Nodes	Subnodes
	4	Dividing a positive integer by an improper fraction	• divide a positive integer by an im- proper fraction and mixed numeral
		Dividing an improper fraction by a positive integer	• divide an improper fraction by a positive integer
	5	Dividing improper fractions by proper fractions and vice versa	• divide improper fractions by proper fractions and vice versa
		Dividing an improper fraction by an improper fraction	• divide an improper fraction by an improper fraction
		One quantity as a fraction of anot	her
Expressing one quantity as a fraction of another	1	Expressing 1 quantity as a frac- tion (proper/improper/mixed) of another	• express 1 quantity as a fraction of another
	2	Expressing 1 quantity as a frac- tion of another (using digital tech- nology)	• express 1 quantity as a fraction of another with the use of digital tech- nology
		Rounding decimals	
Rounding decimals	1	Rounding decimals to a specified number of decimal places (simple rounding)	• round decimals to a given num- ber of decimal places when rounding decimals up/down to the next deci- mal place value
	2	Rounding decimals to a specified number of decimal places (com- plex rounding)	• round decimals to a given num- ber of decimal places when rounding decimals requires places to be filled with zeroes
	E	xplore terminating & recurring deci	imals
Explore terminating & recurring decimals	1	Converting fractions to terminat- ing decimals by manipulating the denominator to be a power of 10	• convert fractions to terminating decimals by manipulating the de- nominator to be a power of 10
			• convert improper fractions to termi- nating decimals by manipulating the denominator to be a power of 10
			• convert mixed numerals to termi- nating decimals by manipulating the denominator to be a power of 10
		Fractions, decimals and percentag	ges
Converting decimals	1	Demonstrating that the decimal expansion of a rational number either repeats or terminates	• demonstrate that the decimal ex- pansion of a rational number either repeats or terminates
	2	Converting decimals to percent- ages	• convert decimals with up to 2 deci- mal places to percentages containing whole numbers only
			• convert decimals with more than 2 decimal places to percentages, writ- ing answers as a percentage with decimal parts
			• convert decimals with 3–4 decimal places to percentages, writing answers in fraction form

Learning Journey	Step	Spine Nodes	Subnodes
			• convert decimals with 5 or more decimal places to percentages, writ- ing answers in decimal form rounded to an appropriate degree of accuracy
Converting percentages	1	Converting percentages less than or equal to 100% into fractions	• convert percentages less than or equal to 100% into fractions
		Converting terminating percent- ages less than 100% into a dec- imal	• convert terminating percentages less than 100% into a decimal
	2	Converting percentages greater than 100% to mixed numerals	• convert percentages greater than 100% to mixed numerals
		Converting percentages greater than 100% to improper fractions	• convert percentages greater than 100% to improper fractions
		Converting terminating percent- ages greater than or equal to 100% into a decimal	• convert terminating percentages greater than or equal to 100% into a decimal
	3	Converting recurring percentages less than 100% into a decimal	• convert recurring percentages less than 100% into a decimal
		Converting recurring percentages greater than or equal to 100% into a decimal	• convert recurring percentages greater than or equal to 100% into a decimal
Converting fractions to decimals	1	Converting fractions to decimals using a calculator	• convert fractions to decimals using a calculator
	2	Converting fractions to terminat- ing decimals using division	• convert fractions to terminating decimals using division
			• convert improper fractions to termi- nating decimals using division
			• convert mixed numerals to termi- nating decimals using division
	3	Converting fractions to recurring decimals using division	• convert fractions to recurring deci- mals using division
			• convert improper fractions to recur- ring decimals using division
			• convert mixed numerals to recur- ring decimals using division
Converting fractions to percentages	1	Converting fractions to percent- ages using a calculator	 convert fractions to percentages using a calculator
	2	Converting fractions to terminat- ing percentages by manipulating the denominator to 100	• convert unit fractions to terminat- ing percentages by manipulating the denominator to be 100
			• convert improper fractions to termi- nating percentages by manipulating the denominator to be 100
			• convert mixed numerals to termi- nating percentages by manipulating the denominator to be 100

Learning Journey	Step	Spine Nodes	Subnodes
	3	Converting fractions to terminat- ing percentages using division	 convert fractions to terminating percentages using division
			• convert improper fractions to termi- nating percentages using division
			• convert mixed numerals to termi- nating percentages using division
	4	Converting fractions to recurring percentages using division	• convert fractions to recurring per- centages using division
			• convert improper fractions to recur- ring percentages using division
			• convert mixed numerals to recur- ring percentages using division
Ordering fractions, deci- mals and percentages	1	Ordering fractions, decimals and percentages	 order fractions, decimals and per- centages
		Percentages of quantities	
Percentages of quanti- ties	1	Determining percentages of quantities (written and mental methods)	• determine percentages of quanti- ties using written and mental strate- gies
	2	Determining percentages of quantities (calculator method)	• determine percentages of quanti- ties using a calculator
	3	Expressing a smaller quan- tity/value as a percentage amount of another larger quantity/value	• express a smaller quantity/value as a percentage amount of another larger quantity/value in the same units
			• express a smaller quantity/value as a percentage amount of another larger quantity/value in different units
	4	Expressing a larger quan- tity/value as a percentage amount of another smaller quantity/value	• express a larger quantity/value as a percentage amount of another smaller quantity/value in the same units
			• express a larger quantity/value as a percentage amount of another smaller quantity/value in different units

Financial Maths Best buys and discounts			
Learning Journey	Steps	Spine Nodes	Subnodes
Best buys and discounts	1	Calculating 'best buys' by com- paring price per unit, or quantity per monetary unit, with the use of digital technologies	• calculate 'best buys' by comparing price per unit, or quantity per mone- tary unit, with the use of digital tech- nologies, eg 500 g for \$4.50 com- pared with 300 g for \$2.75
	2	Calculating discounts given the original price	• calculate a discount amount given the original price and the percentage discount
			• calculate the final price of an item given the discount percentage and original price

Learning Journey	Step	Spine Nodes	Subnodes
	3	Calculating 'best buys' by com- paring price per unit, or quan- tity per monetary unit, without the use of digital technology	• calculate 'best buys' by comparing price per unit, or quantity per mon- etary unit without the use of digital technology, eg 500 g for \$4.50 com- pared with 300 g for \$2.76
	4	Calculating discounts starting with the final price	• calculate a discount amount given the final price and the percentage discount
			• calculate the original price given the final price and the percentage discount

		Rates and Ratios			
Learning Journey	Steps	Ratios Spine Nodes	Subnodes		
Using simple ratios	1	Comparing quantities measured in the same units using ratios	• compare quantities measured in the same units using ratios		
		Dividing an interval into a given ratio on a number line	• divide an interval into a given ratio on a number line		
	2	Expressing 1 part of a ratio as a fraction of the whole	• express 1 part of a ratio as a frac- tion of the whole		
	3	Identifying terms of a ratio as 'parts' of the ratio	• identify terms of a ratio as 'parts' of the ratio		
Simplifying ratios	1	Simplifying ratios using highest common factors	• simplify ratios using highest com- mon factors		
	2	Simplifying ratios with fractions involved	• simplify ratios containing one or more fraction parts using the HCF to re-write as a pair of fractions with a common denominator first		
	3	Simplifying ratios with decimals involved	• simplify ratios containing one or more decimal parts multiplying both parts by a common power of 10 that removes the decimal. Write the resul- tant ratio in simplest form		
	4	Identifying equivalent ratios	 identify equivalent ratios 		
Solve simple problems involving ratios	1	Applying the unitary method to ratio problems	• apply the unitary method to ratio problems		
	2	Dividing a quantity into a given	• divide a quantity into a given ratio		
		ratio	• express the division of a quantity into 2 parts as a ratio using original amounts		
	Investigating graphs				
Distance/time graphs	1	Matching a distance/time graph to a description of a particular journey and explaining the rea- sons for the choice	• match a distance/time graph to a description of a particular jour- ney and explain the reasons for the choice		
J	l				

Learning Journey	Step	Spine Nodes	Subnodes
	2	Recognising concepts such as change of speed and direction in distance/time graphs	• recognise concepts such as change of speed and direction in dis- tance/time graphs
		Understanding the meaning of straight line segments with differ- ent gradients in the graph of a particular journey	• understand the meaning of straight-line segments with dif- ferent gradients in the graph of a particular journey
		Recognising the significance of horizontal line segments in dis- tance/time graphs	• recognise the significance of hori- zontal line segments in distance/time graphs
		Understanding which variables go on the horizontal and vertical axis	• understand which variables go on the horizontal and vertical axis
	3	Comparing distance/time graphs of the same situation to decide which one is the most appropriate	• compare distance/time graphs of the same situation to decide which one is the most appropriate
	4	Solving problems involving dis- tance/time rates	• solve a variety of real-life problems involving rate of travel problems
		Calculating speeds for straight line segments of given dis- tance/time graphs	• calculate speeds for straight-line segments of given distance/time graphs
	5	Constructing distance/time graphs	• construct distance/time graphs
Graphs and rates exten- sion	1	Interpreting information using the relative positions of 2 points on a line graph, rather than a detailed scale	• interpret information using the rel- ative positions of 2 points on a line graph, rather than a detailed scale
	2	Calculating unit rates associated with ratios of fractions	• calculate unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units

Algebraic Expressions			
		Equivalent algebraic expression	
Learning Journey	Steps	Spine Nodes	Subnodes
Equivalent algebraic ex- pressions	2	Using equivalent algebraic expressions involving multiplication to indices	• recognise and use equivalent al- gebraic expressions using algebraic symbols and words involving multi- plication
		Using equivalent algebraic ex- pressions involving division	• recognise and use equivalent al- gebraic expressions using algebraic symbols and words using division
	1	Using equivalent algebraic expressions involving addition	• recognise and use equivalent al- gebraic expressions using algebraic symbols and words involving addi- tion

Learning Journey	Step	Spine Nodes	Subnodes
		Using equivalent algebraic expressions involving multiplication	• recognise and use equivalent al- gebraic expressions using algebraic symbols and words involving multi- plication
	3	Using algebraic symbols to rep- resent mathematical operations written in words and vice versa	• use algebraic symbols to represent mathematical operations written in words and vice versa, eg the product of x and y is xy, x + y is the sum of x and y
		Simplifying algebraic expression	IS
Simplifying algebraic ex- pressions	1	Simplifying algebraic expressions that involve addition and sub- traction involving properties of commutativity, associativity and	• extend and apply the laws and properties of arithmetic to algebraic terms and expressions
		grouping symbols	 recognise like terms and add and subtract them to simplify algebraic expressions
	2	Simplifying algebraic expressions that involve multiplication	 simplify algebraic expressions that involve multiplication
			• recognise the equivalence of alge- braic expressions involving multipli- cation, eg 3bc = 3cb
	3	Simplifying algebraic expressions that involve division	• simplify algebraic expressions that involve division
			• recognise whether particular alge- braic expressions involving division are equivalent or not
	4	Connecting algebra with the commutative and associative properties of arithmetic to determine that $a + b = b + a$ and $(a + b) + c = a + (b + c)$	• connect algebra with the com- mutative and associative proper- ties of arithmetic to determine that a + b = b + a and $(a + b) + c = a + (b + c)$
		Recognising the role of group- ing symbols and the different meanings of expressions, such as 2a + 1 and 2(a + 1)	\bullet recognise the role of grouping symbols and the different meanings of expressions, such as 2a + 1 and 2(a + 1)
	·	Algebraic patterns and expressio	ns
Number patterns	1	Using objects to build a geometric pattern, record the results in a ta- ble of values, describe the pattern in words and algebraic symbols, and represent the relationship on a number grid	• use objects to build a geometric pattern, record the results in a ta- ble of values, describe the pattern in words and algebraic symbols, and represent the relationship on a num- ber grid
	2	Checking pattern descriptions by substituting further values	• check pattern descriptions by sub- stituting further values
	3	Replacing written statements de- scribing patterns with equations written in algebraic symbols	• replace written statements describ- ing patterns with equations written in algebraic symbols

Learning Journey	Step	Spine Nodes	Subnodes
Evaluating formulae	1	Substituting known values in for pronumerals	• substitute known values in for pron- umerals to find the value of an ex- pression, eg if $x = 2$ and $y = 3$, find the value of $2x + 3y$
	2	Using simple formulas to solve problems involving substituting in known variables to solve a prob- lem	• use simple formulas to solve prob- lems involving substituting in known variables to solve a problem
	3	Using authentic formulas to solve problems involving substituting in known variables to solve a prob- lem	• use authentic formulas to solve problems involving substituting in known variables to solve a problem
	4	Determining whether a particular pattern can be described using al- gebraic symbols	• describe patterns using algebraic symbols
Creating algebraic ex- pressions	1	Creating algebraic expressions	• create algebraic expressions and evaluate them by substituting a given value for each variable
	2	Substituting into algebraic ex- pressions and evaluating the re-	• substitute into algebraic expres- sions and evaluate the result
		sult	• substitute numerical values into for- mulas and expressions, including sci- entific formulas

		Indices/exponents	
Learning Journey	Steps	Indices/exponents Spine Nodes	Subnodes
Introducing indices/ex- ponents	- 1	Describing numbers written in 'index form' using terms such as 'base', 'power', 'index', 'expo- nent', 'to the power of', 'squared',	• describe numbers written in 'in- dex form' using terms such as 'base', 'power', 'index', 'exponent', 'to the power of', 'squared', 'cubed'
		'cubed'	 use index notation to express pow- ers of numbers (positive indices only)
	2	Evaluating numbers expressed as powers of integers	 evaluate numbers expressed as powers of integers
	3	3 Evaluating expressions involving indices without using a calculator	• evaluate expressions involving in- dices without using a calculator
			• apply the order of operations to evaluate expressions involving in- dices
	4	Evaluating expressions involving indices using a calculator	• evaluate expressions involving in- dices using a calculator
			• apply the order of operations to evaluate expressions involving in- dices
	5	Using index laws to simplify equations with numerical bases	• use index laws to simplify equa- tions with numerical bases
Divisibility and factors	1	Determining and applying tests of divisibility for 2, 3, 4, 5, 6 and 10	• determine and apply tests of divisi- bility for 2, 3, 4, 5, 6 and 10

Learning Journey	Step	Spine Nodes	Subnodes
2	2	Using index notation to express prime factors	• use factor trees to express a num- ber as a product of its prime factors, using index notation where appropri- ate
			• use the ladder method to express a number as a product of its prime fac- tors, using index notation where ap- propriate
	3	Finding the highest common fac- tor of large numbers by first ex- pressing the numbers as products of prime factors	• find the highest common factor of large numbers by first expressing the numbers as products of prime factors

	Equations			
	Solving equations			
Learning Journey	Steps	Spine Nodes	Subnodes	
Equations introduction	1	Demonstrating an understanding of equivalence and the preserva-	• model preservation of equality pic- torially	
		tion of equality or 'balance'	 model preservation of equality symbolically 	
	2	Finding pairs of numbers that sat- isfy an equation with 2 unknowns	• find pairs of numbers that satisfy an equation with 2 unknowns	
	3	Solving simple linear equations using concrete materials	• solve simple linear equations us- ing concrete materials, such as the balance model or cups and coun- ters, stressing the notion of perform- ing the same operation on both sides of an equation	
Solving 1-step equa- tions: addition/subtrac- tion	1	Solving linear equations using in- verse operations involving 1 step of addition or subtraction (inte- gers) with integer solutions	• solve linear equations using inverse operations involving 1 step of addi- tion or subtraction (integers) with in- teger solutions	
	2	Solving linear equations using inverse operations involving 1 step of addition or subtraction (inte- gers or decimals) with integer and non-integer solutions	• solve linear equations using inverse operations involving 1 step of addi- tion or subtraction (integers or dec- imals) with integer and non-integer solutions	
	3	Solving linear equations using inverse operations involving 1 step of addition or subtraction (inte- gers or fractions) with integer and non-integer solutions	• solve linear equations using inverse operations involving 1 step of addi- tion or subtraction (integers or frac- tions) with integer and non-integer solutions	
Solving 1-step equa- tions: multiplication	1	Solving linear equations using in- verse operations involving 1 step of multiplication with integer so- lutions	• solve linear equations using inverse operations involving 1 step of multi- plication with integer solutions	
	2	Solving linear equations using inverse operations involving 1 step of multiplication (integers or decimals) with integer and non- integer solutions	• solve linear equations using inverse operations involving 1 step of multi- plication (integers or decimals) with integer and non-integer solutions	

Learning Journey	Step	Spine Nodes	Subnodes
	3	Solving linear equations using inverse operations involving 1 step of multiplication (integers or decimals) with integer and non- integer solutions	• solve linear equations using inverse operations involving 1 step of multi- plication (integers or decimals) with integer and non-integer solutions
Solving 1-step equa- tions: division	1	Solving linear equations using in- verse operations involving 1 step of division (integers) with integer solutions	• solve linear equations using inverse operations involving 1 step of division (integers) with integer solutions
	2	Solving linear equations using in- verse operations involving 1 step of division with integer and non- integer solutions (pronumeral in numerator position)	• solve linear equations using inverse operations involving 1 step of divi- sion with integer and non-integer so- lutions (pronumeral in numerator po- sition)
	3	Solving linear equations (integer, fraction or decimal coefficients) using inverse operations involv- ing 1 step of division with integer and non-integer solutions (pronu- meral in numerator position)	• solve linear equations (integer, frac- tion or decimal coefficients) using in- verse operations involving 1 step of division with integer and non-integer solutions (pronumeral in numerator position)
Solving 1-step equa- tions: mixed operations	1	Solving linear equations using in- verse operations involving 1 step with mixed operations with inte- ger solutions	• solve linear equations using in- verse operations involving 1 step with mixed operations with integer solutions
	2	Solving linear equations using in- verse operations involving 1 step with mixed operations with inte- ger coefficients, integer and non- integer solutions	• solve linear equations using in- verse operations involving 1 step with mixed operations with integer coefficients, integer and non-integer solutions
	3	Solving linear equations using in- verse operations involving 1 step with mixed operations with inte- ger and non-integer coefficients, integer and non-integer solutions	• solve linear equations using in- verse operations involving 1 step with mixed operations with integer and non-integer coefficients integer and non-integer solutions
Solving 2-step equa- tions: variable in numer- ator	1	Solving linear equations using inverse operations involving 2 steps with mixed operations with integer solutions (pronumeral always in numerator position)	• solve linear equations using inverse operations involving 2 steps with mixed operations with integer solutions (pronumeral always in numerator position)
	2	Solving linear equations using in- verse operations involving 2 steps with mixed operations with in- teger and non-integer solutions (pronumeral always in numerator position)	• solve linear equations using inverse operations involving 2 steps with mixed operations with integer and non-integer solutions (pronumeral always in numerator position)

Learning Journey	Step	Spine Nodes	Subnodes
	3	Solving linear equations using in- verse operations involving 2 steps with mixed operations with in- teger and non-integer solutions (pronumeral always in numerator position)	• solve linear equations using inverse operations involving 2 steps with mixed operations with integer and non-integer solutions (pronumeral always in numerator position)
Solving 2-step equa- tions: variable in de- nominator	1	Solving linear equations using in- verse operations involving 2 steps with mixed operations with inte- ger solutions (pronumeral in nu- merator or denominator position)	• solve linear equations using in- verse operations involving 2 steps with mixed operations with integer solutions (pronumeral in numerator or denominator position)
	2	Solving linear equations using in- verse operations involving 2 steps with mixed operations with in- teger and non-integer solutions (pronumeral in numerator or de- nominator position)	• solve linear equations using inverse operations involving 2 steps with mixed operations with integer and non-integer solutions (pronumeral in numerator or denominator position)
	3	Solving linear equations using in- verse operations involving 2 steps with mixed operations with in- teger and non-integer solutions (pronumeral in numerator or de- nominator position)	• solve linear equations using inverse operations involving 2 steps with mixed operations with integer and non-integer solutions (pronumeral in numerator or denominator position)

Coordinate Geometry					
	Using the coordinate system				
Learning Journey	Steps	Spine Nodes	Subnodes		
Using the coordinate system	1	Locating points on the Cartesian plane	• plot and label points, given coordi- nates, in all 4 quadrants of the num- ber plane		
			 identify and label each quadrant on a number plane 		
			• identify and record the coordinates of given points in all 4 quadrants of the number plane		
	2	Plotting coordinates on the Carte- sian plane (not whole numbers)	• plot and label points on the Carte- sian plane, given coordinates, includ- ing those with coordinates that are not whole numbers		
			• identify and record the coordi- nates of given points on the Carte- sian plane, including those with coor- dinates that are not whole numbers		
		Transformations and symmetry	/		
Transformations on a set of axes	1	Plotting translations of points on the Cartesian plane	• plot and state the coordinates of the image of a point on the Cartesian plane resulting from 1 or more trans- lations		
	2	Plotting and stating the coordi- nates of the image of a given point on the Cartesian plane re- sulting from reflection in either the x-axis or y-axis	• plot and state the coordinates of the image of a given point on the Cartesian plane resulting from reflection in either the x-axis or y-axis		

Learning Journey	Step	Spine Nodes	Subnodes
	3	Plotting and stating the coordi- nates of the image of a given point on the Cartesian plane re- sulting from rotation of multiples	• plot and state the coordinates of the image of a given point on the Carte- sian plane resulting from a rotation of 90° about the origin
		of 90° about the origin	• plot and state the coordinates of the image of a given point on the Carte- sian plane resulting from a rotation of 270° about the origin
Line and rotational sym- metry	1	Identifying line symmetry	• identify, draw and determine the total number of lines of symmetry on designs and shapes, including special triangles, quadrilaterals and polygons
			 complete symmetrical designs and shapes given their line of symmetry
	2	Determining rotational symmetry (review concept and order of ro- tational symmetry)	 determine whether or not given shapes and designs have rotational symmetry
			• determine the order of rotational symmetry for given shapes and designs
	3	Determining lines (axes) of sym- metry and the order of rotational symmetry of polygons, including the special quadrilaterals	• determine if particular triangles and quadrilaterals have line and/or rota- tional symmetry
	4	Investigating the line and rota- tional symmetries of circles and of diagrams involving circles, such as a sector or a circle with a marked chord or tangent	• investigate if a particular circle with a marked chord or tangent, sector of a circle or a regular circle has a line and/or rotational symmetry
	5	Identifying line and rotational symmetries in pictures and dia- grams	• identify if a picture or diagram has a line and/or rotational symmetry

2 Measurement

	Temperature			
			Temperature	
Learning Jo	burney	Steps	Spine Nodes	Subnodes
Solving problems	temperature	1	Measuring temperature scales	• interpret scales on thermometers to accurately read temperatures
		2	Calculating change in tempera- ture	• calculate the difference in tempera- ture between all ranges including be- tween 0 and a negative or positive, both positive, both negative, 1 posi- tive and 1 negative
		3	Solving problems within a given context involving a change in temperature	 solve problems within a given con- text involving a change in tempera- ture
				• solve problems within a given con- text involving a change in tempera- ture using temperature specific ter- minology, eg warmer
		4	Describing the difference be- tween a given minimum and maximum temperature using terms such as 'temperature range'	• describe the difference between a given minimum and maximum tem- perature using terms such as 'tem- perature range'

	Area				
Learning Journey	Steps	Solve area problems Spine Nodes	Subnodes		
Solving area problems involving rectangles	1	Applying the formula for the area of a rectangle	• apply the formula for area of a rect- angle to find the area of rectangles given 2 side lengths measured in the same or different units		
			• apply the formula for area of a rect- angle to find the area of compos- ite rectilinear figures, such as an L- shape, U-shape		
			 apply the formula to real life con- texts 		
	2	Investigating and comparing the areas of rectangles that have the same perimeter	• investigate and compare the ar- eas of rectangles that have the same perimeter, eg compare the areas of all possible rectangles with whole- number dimensions and a perimeter of 20 centimetres		
	3	Finding the dimensions of rectan- gles and squares given their ar- eas	• find the possible dimensions of rect- angles and squares given their areas		
Solving area problems involving triangles	1	Applying the formula to find the areas of right-angled triangles	• apply the formula to find the areas of right-angled triangles		
	2	Applying the formula to find the areas of non right-angled trian- gles	• apply the formula to find the areas of triangles in which the perpendicu- lar height meets the base within the length of the base		

Learning Journey	Step	Spine Nodes	Subnodes
			• apply the formula to find the areas of triangles in which the perpendicu- lar height meets the base outside the length of the base
	3	Finding the dimensions of a right- angled triangle given its area	• find the dimensions of a right- angled triangle given its area and ei- ther its base or height by using the formula for the area of a triangle
	4	Finding the dimensions of a non right-angled triangle given its area	• find the dimensions of non right- angled triangles given its area and either its base or height using the for- mula for the area of a triangle
			• find the dimensions of non right- angled triangles in which the perpen- dicular height meets the base outside the length of the base given its area and either its base or height by using the formula for the area of a triangle
	5	Solving real-life problems involv- ing calculating the area of trian- gles	• solve real-life problems involving calculating the area of triangles
Solving area problems involving parallelograms	1	Finding the area of a parallelo- gram using a formula	• apply the formula to find the area of parallelograms in different orienta-tions
			• apply the formula to find the area of parallelograms in different orienta- tions which include more dimensions than are necessary to calculate the area
	2	Finding the dimensions of a par- allelogram given its area	• find the dimensions of a parallel- ogram given its area and either its length or width by using the formula for the area of a parallelogram
			• find the dimensions of a parallel- ogram in different orientations given its area and either its length or width by using the formula for the area of a parallelogram
	3	Solving real-life problems involv- ing calculating the area of paral- lelograms	• solve real-life problems involving calculating the area of parallelo- grams
Solving area problems: simple composite figures	1	Calculating the area of compos- ite shapes constructed from trian- gles and special quadrilaterals	• apply area formulas for a variety of composite shapes to calculate their area

Volume Volume of rectangular prisms				
Learning Journey	Steps		Subnodes	
Volume of rectangular prisms	1	Calculating the volumes of rect- angular prisms using additive and	• describe rectangular prisms in terms of layers	
		multiplicative strategies	• use repeated addition to find the volumes of rectangular prisms	

Learning Journey	Step	Spine Nodes	Subnodes
			• calculate the volumes of rectan- gular prisms in cubic centimetres and cubic metres including calculat- ing the volume given the net for the shape
			 record calculations used to find the volumes of rectangular prisms
	1	Explore different views of prisms/sc	olids
Explore different views of prisms/solids	1	Drawing (in two dimensions) prisms from different views by connecting cubes, including top, side, front and back views	• draw from connecting cubes (in two dimensions) prisms from differ- ent views, including top, side, front and back views
	2	Drawing (in two dimensions) solids formed from combinations of prisms by connecting cubes, from different views, including top, side, front and back views	• draw from connecting cubes (in two dimensions) solids formed from com- binations of prisms, from different views, including top, side, front and back views
	3	Drawing (in two dimensions) prisms from different views, in- cluding top, side, front and back views	• draw (in two dimensions) prisms from different views, including top, side, front and back views
		Drawing (in two dimensions) solids formed from combinations of prisms, from different views, including top, side, front and back views	• draw (in two dimensions) solids formed from combinations of prisms, from different views, including top, side, front and back views
	4	Identifying prisms from their cross-section	• identify the cross-sections of differ- ent prisms
		Drawing the cross-sections of prisms	• draw the cross-sections of prisms

3 Geometry

		Shape	
		Geometry conventions	
Learning Journey	Steps	Spine Nodes	Subnodes
Labels and naming con- ventions	1	Labelling common shapes	 label and name triangles (eg trian- gle ABC or ΔABC) and quadrilaterals (eg ABCD) in text and on diagrams
			• use the common conventions to mark equal intervals on diagrams
Geometry conventions	1	Using the language and conven- tions of geometry	 define, name, label and draw points using capital letters
			• define, name, label and draw lines using capital letters
			 define, name, label and draw rays using capital letters
			• define, name, label and draw line segments using capital letters
			• define, name, label and draw an- gles using capital letters
			• name, label and draw triangles us- ing capital letters
			 name, label and draw quadrilater- als and other polygons using capital letters
			 use common conventions to label right angles and equal angles on di- agrams
			• use common conventions to label equal line segments on diagrams
Describing cross sec- tions of 3D figures	1	Describing the two-dimensional figures that result from slicing three-dimensional figures	• describe the two-dimensional fig- ures that result from slicing three- dimensional figures, ie plane sections of right rectangular prisms and right rectangular pyramids
		Triangles	
Properties of triangles	1	Classifying types of triangles	• recognise and classify types of tri- angles on the basis of their properties (acute-angled, right-angled, obtuse- angled, equilateral, isosceles and scalene triangles)
			 recognise that a given triangle may belong to more than 1 class
	2	Sketching and labelling triangles from a worded or verbal descrip- tion	• determine whether the triangle ex- ists according to its physical descrip- tion
Triangle Inequality The- orem	1	Verifying the Triangle Inequality theorem using constructions and apply the theorem to solve prob- lems	• verify the Triangle Inequality the- orem using constructions and apply the theorem to solve problems

Learning Journey	Step	Spine Nodes	Subnodes
Constructing triangles with given conditions	1	Constructing triangles with given conditions	• construct triangles from 3 measures of angles or sides, noticing when the conditions determine a unique trian- gle, more than 1 triangle, or no trian- gle
			• identify, through investigation, the minimum side and angle informa- tion needed to describe a unique tri- angle, eg side-side-side, side-angle- side, angle-angle-side
		Quadrilaterals	
Convex and non-convex quadrilaterals	1	Distinguishing between convex and non-convex quadrilaterals	• distinguish between convex and non-convex quadrilaterals using the fact that the diagonals of a convex quadrilateral lie inside the figure
			• distinguish between convex and non-convex quadrilaterals using the fact that a non-convex quadrilateral that has an interior angle greater than 180 degrees
Properties of quadrilat- erals	1	Investigating properties of special quadrilaterals: rectangles	• investigate the properties of rectan- gles
		Investigating properties of special quadrilaterals: squares	• prove a quadrilateral is a square us- ing properties
	2	Investigating properties of special quadrilaterals: parallelograms	• prove a quadrilateral is a parallelo- gram using properties
	3	Investigating properties of special quadrilaterals: rhombuses	• prove a quadrilateral is a rhombus using properties
	4	Investigating properties of special quadrilaterals: trapeziums/trape- zoids	• prove a quadrilateral is a trapezium using properties
	5	Investigating properties of special quadrilaterals: kites	• prove a quadrilateral is a kite using properties
Reasoning, sketching and describing quadri-	- 1	Reasoning about special quadri- laterals on the basis of their prop- erties	• classify a set of quadrilaterals based on their properties
laterals			• identify a given quadrilateral from its description
			 identify a given quadrilateral from a diagram
	2	Describing special quadrilaterals	• describe a quadrilateral in sufficient detail for it to be sketched
	3	Reasoning about triangles and special quadrilaterals	• use the properties of special trian- gles and quadrilaterals to solve sim- ple numerical problems with appro- priate reasoning
			• recognise special types of trian- gles and quadrilaterals embedded in composite figures or drawn in various orientations

Learning Journey	Step	Spine Nodes	Subnodes				
	Triangles and quadrilaterals						
Using properties of tri- angles & quadrilaterals	1	Reasoning about triangles and special quadrilaterals	• use the properties of special trian- gles and quadrilaterals to solve sim- ple numerical problems with appro- priate reasoning				
		Reasoning about triangles and special quadrilaterals	• recognise special types of trian- gles and quadrilaterals embedded in composite figures or drawn in various orientations				
	2	Determining unknown sides and angles embedded in diagrams, using the properties of special tri- angles and quadrilaterals, giving reasons	• determine unknown sides and an- gles embedded in diagrams, using the properties of special triangles and quadrilaterals, giving reasons				

		Angles	
		Sums of interior angles	
Learning Journey	Steps	Spine Nodes	Subnodes
Solving sums of interior angles	1	Exploring and proving the interior angle sum of a triangle	• calculate an unknown angle repre- sented by a variable within a triangle, given the other 2 angles
	2	Finding the interior angle sum of a quadrilateral	 calculate an unknown angle/s represented by a variable/s within quadrilaterals, given the appropriate angles
		Angle relationships and parallel li	nes
Angles at a point	1	Investigating and defining com- plementary angles	 define complementary angles and identify them in diagrams
		Calculating complementary an- gles	 calculate the size of an unknown angle in a diagram and explain how this is done (using complementary angles)
	2	Investigating and defining sup- plementary angles	 define supplementary angles and identify them in diagrams
		Calculating supplementary an- gles	 calculate the size of an unknown angle in a diagram and explain how this is done (using supplementary angles)
		Investigating and identifying ad- jacent angles	 identify adjacent angles within a di- agram
		Calculating where angles form a revolution	• calculate the size of an unknown angle in a diagram and explain how this is done (using knowledge of an- gles that add to 360°)
	4	Identifying and naming right an- gles, straight angles, vertically opposite angles and angles of complete revolution embedded in diagrams	• identify and name right angles, straight angles, vertically opposite angles and angles of complete revo- lution embedded in diagrams
	5	Applying geometric reasoning for adjacent angle relationships	• apply theorems of complementary angles, supplementary angles, verti- cally opposite and adjacent angles, calculating unknown angles

Learning Journey	Step	Spine Nodes	Subnodes
			• apply theorems for adjacent angles represented by variables in multi- step problems, writing equations to solve for an unknown angle, checking the reasonableness of the answer
			• apply theorems of complementary angles, supplementary angles, verti- cally opposite and adjacent angles in multi-step problems, calculating un- known angles and stating all rela- tionships used
Parallel and perpendicu- lar line conventions	1	Identifying perpendicular and parallel lines	 name and record perpendicular lines using the conventional notation
			• define parallel lines and identify them in pictures, designs, diagrams and the environment, using conven- tional notation to mark them
			 name and record parallel lines using the conventional notation
Angle relationships on parallel lines	1	Exploring special pairs of angles on parallel lines	• define, identify and draw transver- sals on sets of 2 or more parallel lines
			• define and identify pairs of equal corresponding angles when 2 or more parallel lines are cut by a transversal
			• define and identify pairs of equal al- ternate angles when 2 or more paral- lel lines are cut by a transversal
			• define and identify pairs of sup- plementary cointerior angles when 2 or more parallel lines are cut by a transversal
	2	Applying geometric reasoning with corresponding angles on parallel lines	• use corresponding angles on paral- lel lines to calculate unknown angles represented by variables
	3	Applying geometric reasoning with alternate angles on parallel lines	• use alternate angles on parallel lines to calculate unknown angles represented by variables
	4	Applying geometric reasoning with co-interior angles on parallel lines	• use cointerior angles on parallel lines to calculate unknown angles represented by variables
	5	Applying geometric reasoning with angles on parallel lines by choosing the appropriate angle relationship	• choose and apply the appropriate angle property to calculate unknown angles on parallel lines represented by variables
		Parallel lines and geometric reason	
Proving parallel lines	2	Proving lines are parallel	• prove or disprove that a pair of lines are parallel using the relation- ships between corresponding angles, alternate angles, and cointerior an- gles

Learning Journey	Step	Spine Nodes	Subnodes
Geometric reasoning us- ing angle properties	1	Applying geometric reasoning with angles at a point and angles on parallel lines	• apply theorems of angles at a point and angles on parallel lines to solve numerical geometric problems involving up to 3 theorems/steps, giving a reason for each step of the solution

4 Data

Data				
	Charac	Collecting and interpreting date		
Learning Journey Issues with data from primary & secondary sources	Steps 1	Spine Nodes Identifying and investigating is- sues involving numerical data col- lected from primary and sec- ondary sources	Subnodes • identify the difference between data collected from primary and sec- ondary sources, eg data collected in the classroom compared with data drawn from a media source	
	2	Exploring issues involved in con- structing and conducting surveys, such as sample size, bias, type of data required, and ethics	• detect and discuss bias, if any, in the selection of a sample	
Collecting and interpret- ing data	1	Constructing appropriate survey questions and a related record- ing sheet in order to collect both	• construct a recording sheet that al- lows efficient collection of the differ- ent types of data expected	
		numerical and categorical data about a matter of interest	• decide whether a census or a sam- ple is more appropriate to collect the data required to investigate the mat- ter of interest	
	2	Collecting and interpreting infor- mation from secondary sources, presented as tables and/or graphs, about a matter of interest	• collect and interpret information from secondary sources, presented as tables and/or graphs, about a matter of interest, eg sporting data, information about the relationship between wealth or education and the health of populations of different countries	
			• interpret and use scales on graphs, including those where abbreviated measurements are used, eg '50' on a vertical axis representing thousands is interpreted as '50 000'	
			• identify features on graphical dis- plays that may mislead and result in incorrect interpretation, eg displaced zeros, the absence of labelling on 1 or both axes, potentially misleading units of measurement	
	3	Using spreadsheets or statisti- cal software packages to tabulate and graph data	• use spreadsheets or statistical software packages to tabulate and graph data	
	4	Discussing ethical issues that may arise from collecting and representing data	• discuss ethical issues that may arise from collecting and represent- ing data	
	·	Representing data	·	
Tallies and frequency distribution tables	1	Using a tally to organise data into a frequency distribution table	• use a tally to organise data into a frequency distribution table	
Histograms and poly- gons	1	Interpreting a discrete data set from its histogram and polygon	• interpret a discrete data set from its histogram and polygon	

Learning Journey	Step	Spine Nodes	Subnodes
	2	Constructing and interpreting fre- quency histograms and polygons	• construct and interpret frequency histograms and polygons
Histograms and poly- gons: grouped data	1	Interpreting a discrete data set from its histogram and polygon where grouping is required	• interpret a discrete data set from its histogram and polygon where group-ing is required
	2	Constructing histograms for dis- crete data sets where grouping is required	• construct histograms for discrete data sets where grouping is required
	3	Constructing combined his- tograms and polygons for dis- crete data sets where grouping is required	• construct combined histograms and polygons for discrete data sets where grouping is required
Dot plots	1	Interpreting dot plots	 interpret dot plots
	2	Constructing dot plots	construct dot plots
Ordered stem-and-leaf plots	1	Interpreting ordered stem-and- leaf plots with whole numbers and simple decimal values	• interpret ordered stem-and-leaf plots with whole numbers and simple decimal values
	2	Constructing ordered stem-and- leaf plots with whole numbers	• construct ordered stem-and-leaf plots with whole numbers only
	3	Constructing ordered stem-and- leaf plots with whole numbers and simple decimal values	• construct ordered stem-and-leaf plots with whole numbers and simple decimal values
Divided bar graphs	1	Interpreting divided bar graphs	• interpret divided bar graphs
	2	Constructing divided bar graphs with the use of digital technology	• construct divided bar graphs with the use of digital technology
	3	Constructing divided bar graphs without the use of digital technol- ogy	• calculate the length of the bar re- quired for each section of divided bar graphs
Sector/pie graphs	1	Interpreting sector graphs	 interpret sector graphs
	2	Constructing sector graphs with the use of digital technology	• construct sector graphs with the use of digital technology
	3	Constructing sector graphs with- out the use of digital technology	• calculate the angle at the centre required for each sector of sector graphs
Line graphs	1	Interpreting line graphs	 interpret line graphs
	2	Constructing line graphs with the use of digital technology	• construct line graphs with the use of digital technology
Interpreting a variety of different graphs	1	Interpreting a variety of graphs, including dot plots, stem-and-leaf plots, divided bar graphs, sector graphs and line graphs	• interpret a variety of graphs, includ- ing dot plots, stem-and-leaf plots, di- vided bar graphs, sector graphs and line graphs

Learning Journey	Step	Spine Nodes	Subnodes
			• calculate the percentage of the whole represented by different cate- gories in a divided bar graph or sector graph
			• draw conclusions from data dis- played in a graph, eg 'The graph shows that the majority of Year 8 stu- dents who play a musical instrument play a string instrument'
			• critique ways in which data is pre- sented in sector graphs, line graphs, bar graphs and pictographs
		Mean, Median, Mode and Range	9
Calculating the mean	1	Calculating the mean of a set of data using mean = sum of data values/number of data values	• calculate the mean of a set of data using mean = sum of data val- ues/number of data values
	2	Using the statistical functions of a spreadsheet to determine the mean for large sets of data	• use the statistical functions of a spreadsheet to determine the mean for large sets of data
Median mode and range	1	Determining the median for sets of data without the use of digital technology	• determine the median for sets of data without the use of digital tech- nology and containing an odd num- ber of scores
			• determine the median for sets of data without the use of digital tech- nology and containing an even num- ber of scores
	2	Determining the mode for sets of data without the use of digital technology	• determine the mode for sets of data without the use of digital technology
	3	Determining the range for sets of data without the use of digital technology	• determine the range for sets of data without the use of digital technology
	4	Determining the median, mode and range for sets of data using digital technology	• determine the median, mode and range for sets of data using digital technology
			• use the statistical functions of a spreadsheet to determine the me- dian, mode and range for large sets of data
	Using r	nean, median, mode to interpret da	ta displays
Using mean/me- dian/mode to interpret data	1	Calculating measures of location (mean, median and mode) and the range for data represented in a variety of statistical displays, in- cluding frequency distribution ta- bles, frequency histograms, stem- and-leaf plots and dot plots	• calculate measures of location (mean, median and mode) and the range for data represented in a va- riety of statistical displays, includ- ing frequency distribution tables, fre- quency histograms, stem-and-leaf plots and dot plots

Learning Journey	Step	Spine Nodes	Subnodes
	2	Drawing conclusions based on the analysis of data displays us- ing the mean, median and/or mode, and range	• draw conclusions based on the analysis of data displays using the mean, median and/or mode, and range

5 Chance and Probability

Chance and probability					
Learning Journey	Chance experiments and sample spaces Learning Journey Steps Spine Nodes Subnodes				
Language of chance ex- periments	1	Understanding the language around chance	• understand that the term 'chance experiment' is used when referring to actions such as tossing a coin, rolling a dice or randomly selecting an object from a bag		
			• understand that the term 'outcome' is used to describe a possible result of a chance experiment and list all of the possible outcomes for a single-step experiment		
			• understand that the term 'sample space' is used to describe a list of all of the possible outcomes for a chance experiment		
			• use the term 'probability' to de- scribe the numerical value that rep- resents the likelihood of an outcome of a chance experiment		
			• arrange the likelihood of chance experiment outcomes in order from least likely to most likely (and vice versa)		
Sample spaces	1	Identifying equally likely out- comes in single-step chance experiments	 identify equally likely outcomes in single-step chance experiments 		
	2	Identifying the sample space for a probability experiment involving 1 event	 identify the sample space for a probability experiment involving 1 event 		
	3	Identifying the sample space for a probability experiment involving 2 independent events	• identify the sample space (where the combined sample space has 36 or fewer elements) for a probability experiment involving 2 independent events		
	4	Listing the outcomes for chance experiments where the outcomes are not equally likely to occur and assign probabilities to the out- comes using fractions	• list the outcomes for chance ex- periments where the outcomes are not equally likely to occur and assign probabilities to the outcomes using fractions		
Chance experiments	1	Describing single-step chance ex- periments in which the outcomes are equally likely	• describe single-step chance exper- iments in which the outcomes are equally likely		
	2	Describing single-step chance ex- periments in which the outcomes are equally and not equally likely	• describe single-step chance exper- iments in which the outcomes are equally and not equally likely		

Learning Journey	Step	Spine Nodes	Subnodes
	3	Creating and conducting a chance experiment given equally probable events	• determine the theoretical probabil- ity of a series of events using tree di- agrams
			• compare the expected probabilities with the observed probabilities after both small and large numbers of tri- als for the chance experiment given equally probable events
	4	Creating and conducting a chance experiment given un-	 create a chance experiment given unequally probable events
		equally probable events	• determine the theoretical probabil- ity of a series of unequally probable events using tree diagrams
		Probability	
Language of probability	1	Recognising that a probability of 0 is for events that are impossible and a probability of 1 for events that are certain to occur	• recognise that a probability of 0 is for events that are impossible and a probability of 1 for events that are certain to occur
	2	Relating calculated probabilities with the language of chance and the likelihood number line	• relate calculated probabilities with the language of chance and the like- lihood number line
	3	Assigning numerical probabilities with their associated language	• assign language such as impos- sible, highly unlikely, unlikely, even chance, likely, highly likely and cer- tain to the known probabilities of out- comes occurring
			• allocate words such as impossible, highly unlikely, unlikely, even chance, likely, highly likely and certain along a number line from 0 to 1 representing their respective probabilities
Understanding basic probability	1	Explaining the meaning of 0, $\frac{1}{2}$ and 1 in a given chance situation, using the language of chance	\bullet explain the meaning of 0, $\frac{1}{2}$ and 1 in a given chance situation, using the language of chance
	2	Applying probabilities to sim- ple events by reasoning about equally likely outcomes	• apply probabilities to simple events by reasoning about equally likely out- comes
	3	Expressing the theoretical probability of an event formally	• express the theoretical probabil- ity of an event, given a number of equally likely outcomes in the sam- ple space, as P(event) = number of favourable outcomes ÷ total number of outcomes
	4	Expressing probabilities as deci- mals, fractions and percentages	• express probabilities as decimals, fractions and percentages
		Interpreting probabilities ex- pressed as fractions, percentages or decimals	• interpret probabilities expressed as fractions, percentages or decimals

Learning Journey	Step	Spine Nodes	Subnodes
	5	Calculating the probability of an event of a single-step experiment using cards, dice, spinners, etc	• calculate the probability of an event of a single-step experiment using cards, dice, spinners, etc

Part II Level 8

6 Number and Algebra

Integers				
Learning Journey	Steps	Applying the four operations to inte Spine Nodes	e gers Subnodes	
Applying the four opera- tions to integers	1	Using the 4 operations with inte- gers	• use the 4 operations to solve prob- lems involving integers	
	2	Applying the order of operations to evaluate expressions involving integers with no indices or radi- cals	• apply the order of operations to evaluate expressions involving inte- gers with no indices or radicals	
	3	Applying the order of operations to evaluate expressions involv- ing integers where the operator is contained within the numerator or denominator of a fraction	• apply the order of operations to evaluate expressions involving inte- gers, where an operator is contained within the numerator or denominator of a fraction and the result is a whole number	
			• apply the order of operations to evaluate expressions involving inte- gers where the operator is contained within the numerator or denominator of a fraction	

	Fractions, Decimals and Percentages			
		Working with percentages		
Learning Journey	Steps	Spine Nodes	Subnodes	
Increasing and decreas- ing amounts	1	Increasing and decreasing amounts by percentages (calcu- lator method)	• increase and decrease a quantity by a given percentage using the cal- culator method	
	2	Increasing and decreasing amounts by percentages (written and mental methods)	• increase an amount by first calcu- lating the percentage increase value of the original amount, and then adding that result to the original amount	
			• decrease an amount by first calcu- lating the percentage decrease value of the original amount, and then sub- tracting that result from the original amount	
	3	Recognising and using equiva- lences when calculating percent- age increases and decreases	• increase an amount by a per- centage by multiplying the original amount by 1 + the percentage in- crease expressed as a decimal	
			• decrease an amount by a per- centage by multiplying the original amount by 1 - the percentage de- crease expressed as a decimal	

Learning Journey	Step	Spine Nodes	Subnodes
Problem solving involv- ing percentages	1	Using the unitary method to solve problems involving percentages (written method)	 use the unitary method to find the original quantity/value following a percentage increase/decrease, eg find the original value, given the value after an increase of 20% find original value after a percent- age increase/decrease
	2	Using the unitary method to solve problems involving percentages (calculator method)	• use the unitary method with a calculator to solve problems involv- ing percentages, eg find the origi- nal value given the value after an in- crease of 20%
			• find the original value after a per- centage increase/ decrease
	3	Interpreting and using nutritional information panels on product packaging where percentages are involved	• interpret and use nutritional infor- mation panels on product packaging where percentages are involved
		Interpreting and using state- ments about the environment involving percentages, eg energy use for different purposes such as lighting	• interpret and use statements about the environment involving percent- ages, eg energy use for different pur- poses, such as lighting
	4	Solving real-life problems involv- ing percentages	• solve a variety of real-life problems involving percentages, including per- centage composition problems and problems involving money

Financial Maths Solving problems involving profit & loss				
Learning Journey	Steps	Spine Nodes	Subnodes	
Solving problems involv- ing profit and loss	1	Understanding the financial terms 'profit' and 'loss'	• understand the meaning of the terms 'cost price', 'sale price', 'profit and loss' and the relationships be- tween them	
	2	Solving problems involving profit and loss with the use of digital technology	• calculate the selling price, given the percentage profit/loss on the cost price with the use of digital technol- ogy	
			• express profit/loss as a percentage of the cost price with the use of digital technology	
			• calculate the cost price, given the selling price and percentage profit/loss with the use of digital technology	
	3	Solving problems involving profit and loss without the use of digital technology	• calculate the selling price, given the percentage profit/loss on the cost price without the use of digital tech- nology	
			• express profit/loss as a percentage of the cost price without the use of digital technology	

Learning Journey	Step	Spine Nodes	Subnodes
			• calculate the cost price, given the selling price and percentage profit/loss without the use of digital technology
	4	Solving complex problems involv- ing multiple steps	 solve complex problems involving multiple steps

		Rates and Ratios	
Learning Journey	Steps	Rates and ratios Spine Nodes	Subnodes
Solve problems involving ratios	1	Dividing a given quantity into 2 parts in a given part:whole ratio	 divide a given quantity into 2 parts in a given part:whole ratio
	2	Solving a variety of real-life prob- lems involving dividing quatities into a given ratio	• solve a variety of real-life problems involving dividing quantities into a given ratio
Ratios involving more than two parts	1	Simplifying ratios using highest common factors (ratio composed of 3 or more numbers)	• simplify ratios using highest com- mon factors
	2	Dividing a quantity into a given ratio (ratio composed of 3 or more numbers)	 divide a quantity in a given ratio
	3	Applying the unitary method to ratio problems (ratio composed of 3 or more numbers)	 apply the unitary method to ratio problems
Converting ratios	1	Converting units in a ratio into the same unit then simplifying	 convert units of a ratio into the same unit
			 simplify ratios
	2	Converting between units of measurement using ratios	• convert between units of measure- ment using ratios
Using rates	1	Introducing rates	• use rates to compare quantities measured in different units
	2	Converting given information into a simplified rate	 convert given information into a simplified rate
	3	Comparing rates	• compare 2 quantities of different rates
	4	Determining an amount for a given time period given a rate	• determine an amount for a given time period given a unit rate
			• determine an amount for a given time period given a rate
	5	Solving problems comparing 2 given rates by simplifying	 solve problems comparing 2 given rates by simplifying
Solving unit rate prob- lems involving fractions	5	Applying the unitary method to ratio problems involving fractions (customary and metric units)	• apply the unitary method to ra- tio problems involving fractions (cus- tomary and metric units)
			• solve a variety of real-life problems involving ratios of fractions (custom- ary and metric units)

		Algebraic expressions	
		Working with algebraic expressio	
Learning Journey	Steps	Spine Nodes	Subnodes
Simplfying algebraic ex- pressions using mixed operations	1	Simplifying algebraic expressions involving the 4 operations	 simplify a range of algebraic ex- pressions, including those involving mixed operations
			• apply the order of operations to simplify algebraic expressions
Extending and applying the distributive law	1	Expanding algebraic expressions in the form a(b+c) by remov- ing grouping symbols (distributive law) where a and c are positive in- tegers and b is a variable with co- efficient of 1	• expand algebraic expressions in the form a(b+c) by removing grouping symbols (distributive law) where a and c are positive integers and b is a variable with coefficient of 1
	2	Expanding algebraic expressions in the form a(b+c) by remov- ing grouping symbols (distributive law) where a and c are positive or negative integers and b is a vari- able with coefficient of 1	• expand algebraic expressions in the form a(b+c) by removing grouping symbols (distributive law) where a and c are positive or negative inte- gers and b is a variable with coeffi- cient of 1
	3	Expanding algebraic expressions in the form a(b+c) by remov- ing grouping symbols (distributive law) where a, b, and c can be pos- itive numbers or variables (coeffi- cients are 1)	• expand algebraic expressions in the form a(b+c) by removing grouping symbols (distributive law) where a, b, and c can be positive numbers or variables (coefficients are 1)
	4	Expanding algebraic expressions in the form a(b+c) by remov- ing grouping symbols (distributive law) where a, b and c can be pos- itive or negative numbers or vari- ables (coefficients 1 or -1)	• expand algebraic expressions in the form a(b+c) by removing grouping symbols (distributive law) where a, b and c can be positive or negative numbers or variables (coefficients 1 or -1)
	5	Expanding algebraic expressions in the form a(b+c) by remov- ing grouping symbols (distribu- tive law) where a, b and c can be positive or negative numbers or variables (coefficients integers not limited to 1)	• expand algebraic expressions in the form a(b+c) by removing grouping symbols (distributive law) where a, b and c can be positive or negative numbers or variables (coefficients in- tegers not limited to 1)
		Factorising algebraic expression	S
Factorising algebraic ex- pressions	1	Decomposing (factorising) alge- braic expressions by identifying numerical and algebraic factors	• decompose (factorise) algebraic ex- pressions by identifying numerical and algebraic factors and writing it as a product of these
	2	Factorising algebraic expressions by identifying numerical factors	• factorise algebraic expressions by finding a common numerical factor and bringing it out the front of the brackets with its product inside the brackets
	3	Factorising algebraic expressions by identifying negative numerical factors	• factorise algebraic expressions by finding a common negative numeri- cal factor and bringing it out the front of the brackets with its product inside the brackets

Learning Journey	Step	Spine Nodes	Subnodes
Factorising algebraic expressions 2	1	Factorising algebraic expressions by identifying only algebraic fac- tors	• factorise algebraic expressions by finding a common algebraic factor and bringing it out the front of the brackets with its product inside the brackets
	3	Factorising algebraic expressions by identifying algebraic and nu- merical factors	• factorise algebraic expressions by finding a common algebraic and nu- merical factor and bringing it out the front of the brackets with its product inside the brackets

	Index laws Investigating index laws			
Learning Journey	Steps	Spine Nodes	Subnodes	
Investigating index laws	1	Multiplying 2 or more terms with the same numerical base and a positive-integer power, leaving the solution in index form	• multiply 2 or more terms with the same numerical base and a positive- integer power, leaving the solution in index form	
	2	Dividing 2 or more terms with the same numerical base and a positive-integer power, leaving the solution in index form	• divide 2 or more terms with the same numerical base and a positive- integer power, leaving the solution in index form	
	3	Calculating an expression in which a number in index form is raised by a positive-integer power	• calculate an expression in which a number in index form is raised by a positive-integer power	
	4	Using the zero index rule to sim- plify expressions involving num- bers to the power of zero	• use the zero index rule to simplify expressions involving numbers to the power of zero	

	Equations				
		Solving equations			
Learning Journey	Steps	Spine Nodes	Subnodes		
Solving 3-step equa- tions	- 1	Solving linear equations (integer coefficients) using inverse opera- tions involving 3 steps with mixed operations with integer solutions	• solve linear equations (integer coef- ficients) using inverse operations in- volving 3 steps with mixed opera- tions with integer solutions		
	2	Solving linear equations (integer coefficients) using inverse opera- tions involving 3 steps with mixed operations with integer and non- integer solutions	• solve linear equations (integer coef- ficients) using inverse operations in- volving 3 steps with mixed opera- tions with integer and non-integer solutions		
	3	Solving linear equations (integer, fraction or decimal coefficients) using inverse operations involv- ing 3 steps with mixed operations with integer and non-integer so- lutions	• solve linear equations (integer, frac- tion or decimal coefficients) using in- verse operations involving 3 steps with mixed operations with integer and non-integer solutions		

Learning Journey	Step	Spine Nodes	Subnodes
Solving equations with variable on both sides	1	Solving linear equations (integer coefficients) using inverse oper- ations involving pronumerals on both sides of the equation	• solve linear equations (integer coef- ficients) using inverse operations in- volving pronumerals on both sides of the equation
	2	Solving linear equations (integer, fraction or decimal coefficients) using inverse operations involving pronumerals on both sides of the equation	• solve linear equations (integer, frac- tion or decimal coefficients) using in- verse operations involving pronumer- als on both sides of the equation
Solving equations in- volving brackets	1	Solving linear equations (integer coefficients) using inverse opera- tions involving expanding brack- ets	• solve linear equations (integer coef- ficients) using inverse operations in- volving expanding brackets
	2	Solving linear equations (integer, fraction or decimal coefficients) using inverse operations involving expanding brackets	• solve linear equations (integer, frac- tion or decimal coefficients) using in- verse operations involving expanding brackets
Solving basic quadratic equations	1	Solving simple quadratic equa- tions with integer answers	• solve simple quadratic equations of the form $x^2 = c$
		Solving simple quadratic equa- tions with non-integer answers left as decimals	• solve simple quadratic equations with non-integer answers left as dec- imals
		Solving simple quadratic equa- tions with non-integer answers left in exact form	• solve simple quadratic equations with non-integer answers left in ex- act form

Number Theory			
		Irrational numbers	
Learning Journey	Steps	Spine Nodes	Subnodes
Investigating irrational numbers	1	Describing, informally, the prop- erties of irrational numbers	 describe, informally, the properties of irrational numbers
Exploring irrational numbers (surds)	1	Describing, informally, the prop- erties of irrational numbers	• describe, informally, the properties of irrational numbers
	2	Using rational approximations of irrational numbers to compare the size of irrational numbers	• use rational approximations of irra- tional numbers to compare the size of irrational numbers
	3	Approximating the location of ir- rational numbers on a number line	• approximate the location of irra- tional numbers on a number line

Coordinate Geometry Linear relationships			
Learning Journey	Steps	Spine Nodes	Subnodes
Table of values	1	Investigating linear relationships on Cartesian plane (number plane) for number and geometric (spatial) patterns	• identify a table of values matching a linear relationship plotted on the number plane (with and without dig- ital technology)
			• identify the table of values for a given number pattern that matches the points plotted on a number plane
			• describe the linear relationship and the rules (term-to-term and also position-to-term)
Solving linear equations graphically	1	Solving linear equations using graphical techniques	• use graphs of linear relationships to solve a corresponding linear equa- tion, with and without the use of dig- ital technologies
	2	Graph 2 intersecting lines on the same set of axes and read off the point of intersection	• use tables of values to plot 2 straight lines on a single Cartesian plane
			 read the point of intersection of 2 plotted straight lines on a single Cartesian plane

Patterns					
	Number patterns and sequences				
Learning Journey	Steps	Spine Nodes	Subnodes		
Working with Linear Se- quences	quences arising from a given set of numbers or sequences gen- erated from concrete/visual rep- resentations with integer coeffi- cients of n	of numbers or sequences gen- erated from concrete/visual rep-	• find the nth term of increasing linear sequences arising from a given set of numbers or sequences generated from concrete/visual representations with integer coefficients of n		
		• find the nth term of decreasing lin- ear sequences arising from a given set of numbers or sequences gener- ated from concrete/visual represen- tations with integer coefficients of n			
	1	1 Investigating and extending numeric and geometric patterns represented in a table	 investigate and extend numeric patterns represented in a table 		
			• investigate and extend geometric patterns represented in a table		
_	3 Finding the nth term of linear se- quences arising from a given set of numbers or sequences gen- erated from concrete/visual rep- resentations with decimal coeffi-	• find the nth term of increasing linear sequences arising from a given set of numbers or sequences generated from concrete/visual representations with decimal coefficients of n			
		cients of n	• find the nth term of decreasing lin- ear sequences arising from a given set of numbers or sequences gener- ated from concrete/visual represen- tations with decimal coefficients of n		

Learning Journey	Step	Spine Nodes	Subnodes
		Finding the nth term of linear se- quences arising from a given set of numbers or sequences gener- ated from concrete/visual repre- sentations with fractional coeffi-	• find the nth term of increasing linear sequences arising from a given set of numbers or sequences generated from concrete/visual representations with fractional coefficients of n
		cients of n	• find the nth term of a decreasing linear sequences arising from a given set of numbers or sequences gener- ated from concrete/visual represen- tations with fractional coefficients of n
	4	Using the nth term rule for a linear series	• use the nth term rule to find missing terms of the sequence, eg 100th term
			• use the nth term rule to determine whether a number exists in a se- quence
	5	Solving problems involving the use of the nth term formula for a linear sequence	• solve problems involving the use of the nth term formula for a linear se- quence

7 Measurement

	Perimeter			
	Ctore	Perimeter of quadrilaterals	Coloradas	
Learning Journey	Steps	Spine Nodes	Subnodes	
Finding the perimeter	1	Finding perimeters of special quadrilaterals	• find the perimeter of parallelo- grams, trapeziums, rhombuses and kites	
			 apply knowledge of geometric markings to find the perimeters of special quadrilaterals 	
	2	Solving problems involving perimeters of regular polygons	 solve problems involving the perimeters of regular polygons 	
			• solve problems involving perimeters of regular polygons with dimensions given in different units	
	3	Solving problems involving perimeters of composite poly- gons	• solve problems involving perimeters of composite polygons formed using only triangles, squares, rectangles or parallelograms	
			• solve problems involving perimeters of composite polygons formed using regular polygons	
			• solve problems involving perime- ters of composite polygons formed using only triangles, squares, rectan- gles or parallelograms with dimen- sions given in different units	
			• solve problems involving perime- ters of composite polygons formed using regular polygons with dimen- sions given in different units	

Area			
		Area of quadrilaterals	
Learning Journey	Steps	Spine Nodes	Subnodes
Solving area problems involving trapeziums	1	Finding the area of a trapezium using the formula	 apply the formula to find the areas of trapeziums of different orientations and shapes, including 4 unequal sides with no right angles, 2 right angles and isosceles trapezium apply the formula to find the area of the are
			trapeziums in different orientations which include dimensions that are not necessary to calculate the area
	2	Finding the dimensions of a trapezium given its area	• find the dimensions of a trapez- ium given its area and 2 of either its height, roof or base by using the for- mula for the area of a trapezium
			• find the dimensions of a trapezium in different orientations given its area and 2 of either its height, roof or base by using the formula for the area of a trapezium

Learning Journey	Step	Spine Nodes	Subnodes
	3	Solving real-life problems involv- ing calculating the area of trapez- iums	• solve real-life problems involving calculating the area of trapeziums
Solving area problems involving rhombuses	1	Finding the area of a rhombus us- ing the formula	• apply the formula to find the area of rhombuses in different orientations
			• apply the formula to find the area of rhombuses in different orientations which include dimensions that are not necessary to calculate the area
	2	Finding the dimensions of a rhom- bus given its area	• find the dimensions of a rhombus given its area by using the formula for the area of a rhombus
			• find the dimensions of a rhombus in different orientations given its area by using the formula for the area of a rhombus
	3	Solving real-life problems involv- ing calculating the area of rhom- bus'	• solve real-life problems involving calculating the area of rhombus'
Solving area problems involving kites	1	Finding the area of a kite using the formula	• apply the formula to find the area of kites in different orientations
			• apply the formula to find the area of kites in different orientations which include dimensions that are not nec- essary to calculate the area
	2	Finding the dimensions of a kite given its area	• find the dimensions of a kite given its area and either its length or width by using the formula for the area of a kite
			• find the dimensions of a kite in dif- ferent orientations given its area and either its length or width by using the formula for the area of a kite
	3	Solving real-life problems involv- ing calculating the area of kites	• solve real-life problems involving calculating the area of kites

Circles			
Learning Journey	Steps	Working with circles Spine Nodes	Subnodes
ldentifying parts of cir- cles	1	Identifying parts of a circle	• identify and apply circle definitions and properties, including: centre, ra- dius, chord, diameter, circumference, tangent, arc, sector and segment
Working with circumfer- ences of circles	1	Finding circumferences	• develop and use the formulas to find the circumferences of circles in terms of the diameter d or radius r
	2	Finding the diameter and/or ra- dius of a circle given its circumfer- ence	• find the diameter and/or radius of a circle given its circumference
Finding perimeters of parts of circles	1	Finding the perimeters of quad- rants and semicircles	• find the perimeters of quadrants and semicircles given the appropriate information

Learning Journey	Step	Spine Nodes	Subnodes
			• find the diameter and/or radius of a semicircle/quadrant given the perimeter
	2	Finding the perimeters of simple composite figures	• find the perimeters of simple com- posite figures consisting of 2 shapes, including quadrants and semicircles
	3	Finding the perimeters of com- posite figures	• find the perimeters of composite figures containing 3 or more shapes consisting of 3 or more shapes, in- cluding quadrants and semicircles
Finding arc lengths and perimeters of sectors	1	Finding arc lengths and the perimeters of sectors	 find the arc length of a sector solve problems which apply the proportional relationship between the circumference and an arc length measure of the same circle, giving an exact answer in terms of π
	2	Solving problems involving perimeters of sectors	• find the diameter and/or radius of a sector given the perimeter
			• find the perimeters of complex composite figures
			 solve problems involving arcs and sectors
	3	Solving problems involving circles with exact answers	• solve a variety of practical problems involving circles and parts of circles, giving an exact answer in terms of π
		Solving problems involving circles with approximate answers	 solve a variety of practical problems involving circles and parts of circles, giving an approximate answer using a calculator's π function
Solving area problems involving circles	1	Finding the area of a circle using the formula	• apply the formula to find the areas of circles given the radius
			• apply the formula to find the areas of circles given the diameter
	2	Finding the dimensions of a circle given its area	• find the radius of a circle given its area using the formula for the area of a circle
			• find the diameter of a circle given its area using the formula for the area of circle
	3	Solving real-life problems involv- ing calculating the area of circles	• solve real-life problems involving calculating the area of circles
Solving area problems involving parts of circles	1	Finding the area of a semicircle or quadrant of a circle	• find the area of a semicircle or quadrant of a circle
			• find the diameter or radius of a semicircle or quadrant given its area
			• find the diameter or radius of a semicircle or quadrant given its area within the context of a problem
	2	Applying the area of a sector formula with angle given in degrees: $A = \frac{\theta}{360}\pi r^2$	• find the area of a sector using the formula where radius is given and angle is given in degrees

Learning Journey	Step	Spine Nodes	Subnodes
			• find the radius of a sector using the formula where the area is given and angle is given in degrees
			• find the angle of a sector in degrees using the formula where the area and radius are given
			• find the unknown variable using the area of a sector formula in the context of a problem in degrees
	3	Finding the area of composite shapes involving circles, semicir- cles and quadrants	• find the area of composite shapes involving circles, semicircles and quadrants
			• find the area of composite shapes involving circles, semicircles and quadrants within the context of a problem
	4	Finding the area of composite shapes involving circles, semicir- cles and quadrants giving an ex- act answer in terms of pi	• find the area of composite shapes involving circles, semicircles and quadrants giving an exact answer in terms of pi
			• find the area of composite shapes involving circles, semicircles and quadrants within the context of a problem giving an exact answer in terms of pi

	Volume			
Learning Journey	Steps	Units of area and volume Spine Nodes	Subnodes	
Units of area and volume	1	Choosing an appropriate unit to measure the areas of different shapes and surfaces	• choose an appropriate unit to mea- sure the areas of different shapes and surfaces, eg floor space, fields	
	2	Converting between different metric units of area (square millimetres, square centimetres,	• convert between square millime- tres and square centimetres and vice versa	
		square metres, square kilometres, hectares)	• convert between square centime- tres and square metres and vice versa	
			• convert between square metres and hectares and vice versa	
			• convert between square metres and square kilometres and vice versa	
Choosing and convert- ing units of volume	1	Choosing appropriate units to measure the capacities of a vari- ety of containers	• choose appropriate units to mea- sure the capacities of a variety of containers, eg millilitres for a drinking glass, litres for a water urn	
	2	Converting between metric units of volume and capacity (mL, L, kL and ML)	• convert between metric units of volume: $1 \text{km}^3 = 100000 \text{m}^3$, $1 \text{m}^3 = 10000 \text{cm}^3$, $1 \text{cm}^3 = 1000 \text{mm}^3$	
			 convert between metric units of capacity: 1ML = 100000L, 1kL = 1000L, 1L = 1000mL 	

Learning Journey	Step	Spine Nodes	Subnodes
			• convert between metric units of vol- ume and capacity: 1cm3 = 1mL, 1m ³ = 1000L
		Volume of prisms	
Finding the volume of prisms	1	Developing methods and formu- las to find the volume of any prism	• recognise the area of the 'base' of a prism as being identical to the area of its uniform cross-section
	2	Finding the volume of prism with a composite/irregular polygon uniform cross-section, given their perpendicular heights and area of their cross-sections all in the same units	• find the volume of prism with a composite/irregular polygon uniform cross-section, given their perpendicular heights and area of their cross-sections all in the same units
	3	Finding the volume of prism with a composite/irregular polygon with uniform cross-section, given their perpendicular heights and dimensions of the cross-sections all in the same units	• find the volume of prism with a composite/irregular polygon with uniform cross-section, given their perpendicular heights and dimen- sions of the cross-sections all in the same units
	4	Finding the volume of prism with a composite/irregular polygon uniform cross-section, given their perpendicular heights and area of their cross-sections all in different units	• find the volume of prism with a composite/irregular polygon uniform cross-section, given their perpendic- ular heights and area of their cross-sections all in different units
	5	Finding the volume of prism with a composite/irregular polygon with uniform cross-section, given their perpendicular heights and dimensions of the cross-sections all in different units	• find the volume of prism with a composite/irregular polygon with uniform cross-section, given their perpendicular heights and dimen- sions of the cross-sections all in dif- ferent units
Finding the volume of rectangular prisms	1	Finding the volumes of rectangu- lar prisms, given their perpendicu- lar heights and the dimensions of their uniform cross-sections	• find the volumes of rectangu- lar prisms, given their perpendicular heights and the dimensions of their uniform cross-sections
		Finding the volume of a rectangu- lar prism given the area of the uni- form cross-section and perpen- dicular height in the same units	• find the volume of a rectangu- lar prism given the area of the uni- form cross-section and perpendicu- lar height in the same units
	2	Finding the volume of a rectangu- lar prism given the area of the uni- form cross-section and perpen- dicular height in different units	• find the volume of a rectangu- lar prism given the area of the uni- form cross-section and perpendicu- lar height in different units
	3	Finding the height or area of the rectangular prism uniform cross- section given the volume in the same units	• find the height or area of the rect- angular prism uniform cross-section given the volume in the same units

Learning Journey	Step	Spine Nodes	Subnodes
	4	Finding the height/area of the rectangular prism uniform cross- section given the volume in differ- ent units	• find the height/area of the rect- angular prism niform cross-section given the volume in different units
		Finding a missing dimension of a rectangular prism given the vol- ume in different units	• find a missing dimension of a rect- angular prism given the volume in different units
Finding the volume of tri- angular prisms	4	Finding a missing dimension of a triangular prism given the volume in the same units	• find a missing dimension of a trian- gular prism given the volume in the same units
		Finding a missing dimension of a triangular prism given the volume in different units	• find a missing dimension of a trian- gular prism given the volume in dif- ferent units
	1	Finding the volume of a triangular prism given the area of the uni- form cross-section and perpen- dicular height in the same units	• find the volume of a triangular prism given the area of the uniform cross- section and perpendicular height in the same units
		Finding the volume of triangular prisms, given their perpendicular heights and dimensions of their uniform cross-sections all in the same units	• find the volume of triangular prisms, given their perpendicular heights and dimensions of their uniform cross- sections all in the same units
	2	Finding the volume of a triangular prism given the area of the uni- form cross-section and perpen- dicular height in different units	• find the volume of a triangular prism given the area of the uniform cross- section and perpendicular height in different units
		Finding the volume of triangular prisms, given their perpendicular heights and dimensions of their uniform cross-sections all in dif- ferent units	• find the volume of triangular prisms, given their perpendicular heights and dimensions of their uniform cross- sections all in different units
	3	Finding the volume of triangu- lar prisms, given their perpendic- ular heights, dimensions of their uniform cross-sections and addi- tional measurements not required for the calculation in the same/dif- ferent units	• find the volume of triangular prisms, given their perpendicular heights, di- mensions of their uniform cross- sections and additional measure- ments not required for the calculation in the same/different units
Solving problems involv- ing prisms	1	Solving a variety of practical problems involving the volumes and capacities of right prisms	 solve a variety of practical problems involving the volumes and capacities of right prisms
			• find the height or area of a prism with a composite/irregular polygon with uniform cross-section given the volume in the same units
		Volume of cylinders	
solving problems involv- ing cylinders	1	Using the formula to find the vol- umes of cylinders	• find the volume of a right cylin- der given the area of the circle cross- section and perpendicular height in the same units

Learning Journey	Step	Spine Nodes	Subnodes
			• find the volume of a right cylin- der given the area of the circle cross- section and perpendicular height in different units
	2	Finding the height or area of the circle cross-section for a right cylinder given the volume in the	• find the height or area of the cir- cle cross-section for a right cylinder given the volume in the same units
		same units	• find the height or area of the cir- cle cross-section for a right cylinder given the volume in different units
	3	Finding the volume of right cylin- ders, given their perpendicular heights and radius/diameter of their circular cross-sections all in	• find the volume of right cylinders, given their perpendicular heights and radius/diameter of their circular cross sections all in the same units
		the same units	• find the volume of right cylinders, given their perpendicular heights and radius/diameter of their circular cross sections all in different units
	4	Finding the radius, diameter or height of right cylinders, given their volume all in the same units	• find the radius, diameter or height of right cylinders, given their volume all in the same units
			• find the radius, diameter or height of right cylinders, given their volume all in different units
	5	Solving a variety of practical problems involving the volume and capacity of right prisms and cylinders	• solve a variety of practical problems involving the volumes and capacities of right prisms and cylinders

		Time			
	Solve problems involving time				
Learning Journey	Steps	Spine Nodes	Subnodes		
Solving problems involv- ing time	1	Ordering a series of events ac- cording to the time taken to com- plete each one	• order a series of events according to the time taken to complete each one		
	2	Calculating the elapsed time of events using start and finish times using only 12-hour time	• calculate the elapsed time of events using start and finish times using only 12-hour time		
		Calculating the elapsed time of events using start and finish times using 12-hour and 24-hour time	• calculate the elapsed time of events using start and finish times using 12- hour and 24-hour time		
	3	Calculating the starting time of events given the elapsed time and the finishing time using only 12- hour time	• calculate the starting time of events given the elapsed time and the finish- ing time using only 12-hour time		
		Calculating the starting time of events given the elapsed time and the finishing time using 12-hour and 24-hour time	• calculate the starting time of events given the elapsed time and the finish- ing time using 12-hour and 24-hour time		

Learning Journey	Step	Spine Nodes	Subnodes
	4	Calculating the finishing time of events given the elapsed time and the finish times using only 12- hour time	• calculate the finishing time of events given the elapsed time and the finish times using only 12-hour time
		Calculating the finishing time of events given the elapsed time and the finish times using only 12- hour and 24-hour time	• calculate the finishing time of events given the elapsed time and the finish times using 12-hour and 24-hour time
	5	Solving problems within a given context involving starting and finishing times of events and elapsed time using only 12-hour time	• solve problems within a given con- text involving starting and finishing times of events and elapsed time us- ing only 12-hour time
		Solving problems within a given context involving starting and finishing times of events and elapsed time using 12-hour and 24-hour time	• solve problems within a given con- text involving starting and finishing times of events and elapsed time us- ing 12-hour and 24-hour time
Rounding and convert- ing time	1	Introducing the calculator button degrees, minutes, seconds	 add and subtract time using the 'degrees-minutes-seconds' button on the calculator
	2	Rounding time measurements to the nearest hour, minute or sec- ond	• round time measurements to the nearest hour, minute or second
	3	Converting time given in decimal form into hours, minutes and seconds	• convert time given in decimal form into hours, minutes and seconds
	4	Converting time given in hours, minutes and seconds into decimal form	• convert time given in hours, minutes and seconds into decimal form
Solving problems involv- ing time zones	1	Calculating different time zones using a map	• use a map of the world show- ing different time zones to calculate the time difference between 2 differ- ent time zones of the world (ignoring seasonal time shifts)
			• use a map of the world showing different time zones to calculate the time in another part of the world (ig- noring seasonal time shifts) given a time in a particular place (12-hour and 24-hour time)
	2	Comparing the local times in var- ious time zones, including during daylight saving	• compare the local times in various time zones, including during daylight saving
	3	Solving problems involving time duration between different time zones on the same date	• solve problems involving time dura- tion between different time zones on the same date
	4	Solving problems involving time duration between different time zones on different dates	• solve problems involving time dura- tion between different time zones on the different dates

8 Geometry

		Triangles with right angles	
	Ctope	Pythagoras' Theorem	Subpadas
Learning Journey	Steps	Spine Nodes	Subnodes
Identifying sides on right-angled triangles	1	Identifying the hypotenuse as the longest side in any right-angled triangle and also as the side op- posite the right angle	• identify the hypotenuse as the longest side in any right-angled tri- angle and also as the side opposite the right angle
	2	Identifying and labelling sides of a right-angled triangle without any angle measures given	 identify and label the hypotenuse and the 2 shorter sides of a right- angled triangle label the hypotenuse c and the
			shorter sides a and b in a right- angled triangle
			• label the hypotenuse c and the shorter sides a and b in a right- angled triangle within a given con- text
Finding a shorter side using Pythagoras' Theo- rem	2	Finding the length of an unknown side (shorter sides only) using Pythagoras' theorem rounding answers	• find the length of an unknown side (shorter sides only) using Pythago- ras' theorem rounding answers
	1	Finding the length of an unknown side (shorter sides only) using Pythagoras' theorem	• find the length of an unknown side (shorter sides only) using Pythago- ras' theorem
	3	Finding the length of an unknown side (shorter sides only) using Pythagoras' theorem in a vari- ety of practical problems within a given context with and without diagrams given	• find the length of an unknown side (shorter sides only) using Pythago- ras' theorem in a variety of practical problems within a given context with and without diagrams given
Finding the hypotenuse using Pythagoras' Theo- rem	1	Finding the length of an un- known side (hypotenuse only) us- ing Pythagoras' theorem	• find the length of an unknown side (hypotenuse only) using Pythagoras' theorem
	2	Finding the length of an un- known side (hypotenuse only) us- ing Pythagoras' theorem round- ing answers	• find the length of an unknown side (hypotenuse only) using Pythagoras' theorem rounding answers
	3	Finding the length of an un- known side (hypotenuse only) us- ing Pythagoras' theorem in a va- riety of practical problems within a given context with and without diagrams given	• find the length of an unknown side (hypotenuse only) using Pythagoras' theorem in a variety of practical prob- lems within a given context with and without diagrams given
Solving problems involv- ing Pythagoras' Theo- rem	1	Finding the length of an un- known side (shorter side and hy- potenuse) using Pythagoras' the- orem	 find the length of an unknown side (shorter side and hypotenuse) using Pythagoras' theorem

Learning Journey	Step	Spine Nodes	Subnodes
		Finding the length of an un- known side (shorter side and hy- potenuse) using Pythagoras' the- orem rounding answers	 find the length of an unknown side (shorter side and hypotenuse) using Pythagoras' theorem rounding an- swers
	2	Finding the length of an un- known side (shorter side and hy- potenuse) using Pythagoras' the- orem in a variety of practical problems within a given context with and without diagrams given	• find the length of an unknown side (shorter side and hypotenuse) us- ing Pythagoras' theorem in a variety of practical problems within a given context with and without diagrams given
	3	Solving a variety of practical problems involving Pythagoras' theorem within given contexts involving finding missing sides and calculating perimeters with and without diagrams given	• solve a variety of practical problems within given contexts involving find- ing missing sides
			• solve a variety of practical problems within given contexts involving cal- culating perimeters
			• solve a variety of practical problems within given contexts including when sides have different units
	4	Solving a variety of problems involving unknown lengths in two-dimensional shapes that contain right-angled triangles within them	 solve a variety of problems in- volving unknown lengths in two- dimensional shapes that contain right-angled triangles within them
Exploring Pythagorean Triads	1	Identifying a Pythagorean triad as a set of 3 numbers that satisfy Pythagoras' theorem	 identify a Pythagorean triad as a set of 3 numbers that satisfy Pythagoras' theorem
			 establish new Pythagorean triads by starting with another
Using the Converse of Pythagoras' Theorem	1	Using the converse of Pythago- ras' theorem to solve problems	• use the converse of Pythagoras' theorem to establish whether a trian- gle is a right-angled triangle
			• use the converse of Pythagoras' theorem to establish whether a tri- angle is a right-angled triangle for a practical problem within a given con- text
Solving Pythagoras' Theorem problems: ex- act values	1	Finding the length of an unknown side (shorter sides only) using Pythagoras' theorem leaving an- swers in surd form (exact form)	• find the length of an unknown side (shorter sides only) using Pythago- ras' theorem leaving answers in surd form (exact form)
	2	Finding the length of an un- known side (hypotenuse only) us- ing Pythagoras' theorem leaving answers in surd form (exact form)	• find the length of an unknown side (hypotenuse only) using Pythago- ras' theorem leaving answers in surd form (exact form)
	3	Finding the length of an un- known side (shorter side and hy- potenuse) using Pythagoras' the- orem leaving answers in surd form (exact form)	• find the length of an unknown side (shorter side and hypotenuse) us- ing Pythagoras' theorem leaving an- swers in surd form (exact form)

Learning Journey	Step	Spine Nodes	Subnodes
	4	Finding the length of an un- known side (shorter side and hy- potenuse) using Pythagoras' the- orem in a variety of practical problems within a given context with and without diagrams given, with answers given in surd form	• find the length of an unknown side (shorter side and hypotenuse) us- ing Pythagoras' theorem in a variety of practical problems within a given context with and without diagrams given, with answers given in surd form

Congruence			
Defining and working with congruence			
Learning Journey	Steps	Spine Nodes	Subnodes
Defining and working with congruence	1	Identifying congruent figures by superimposing them through a combination of rotations, reflec- tions and translations	• identify congruent figures by su- perimposing them through a combi- nation of rotations, reflections and translations
	2	Matching sides and angles of 2 congruent polygons	 determine which angles and sides of a polygon are matched to another polygon's sides and angles
	3	Determining the condition for 2 circles or parts of circles to be congruent	• determine when 2 circles are con- gruent according to their radii/diam- eters
			• determine when 2 semi-circles are congruent according to their radii/di-ameters
			• determine when 2 sectors are con- gruent according to equal internal angles at the centre and radii/diam- eters
		Determining congruence in triang	les
Determining congruence in triangles	1	Determining if 2 triangles are con- gruent using the SSS test	• use the SSS test to determine if 2 or more triangles are congruent
	2	Determining if 2 triangles are con- gruent using the SAS test	• use the SAS test to determine if 2 or more triangles are congruent
	3	Determining if 2 triangles are con- gruent using the AAS test	• use the AAS test to determine if 2 or more triangles are congruent
	4	Determining if 2 triangles are con- gruent using the RHS test	• use the RHS test to determine if 2 or more triangles are congruent
	5	Determining if 2 triangles are con- gruent using the SSS, SAS, AAS and RHS test	• identify which test to use to deter- mine congruence of triangles
		Using the congruency tests to identify a pair of congruent tri- angles from a selection of 3 or more triangles or from triangles embedded in a diagram	• use the congruency tests (SSS, SAS, AAS, RHS) to identify a pair of con- gruent triangles from a selection of 3 or more triangles or from triangles embedded in a diagram
Using properties of congruent triangles			
Using properties of con- gruent triangles	1	Applying the properties of con- gruent triangles to find an un- known side and/or angle in a di- agram, giving a reason	• apply the properties of congruent triangles to determine a missing an- gle or length by observing a congru- ent triangle that has the matching length or angle

9 Data

Data			
	Ctopo	Collecting data	Subnodes
Learning Journey Collecting data	Steps 1	Spine Nodes Classifying data/recognising vari- ables as categorical (qualitative) or numerical (quantitative) - ei- ther discrete or continuous	 identify examples of categorical variables (eg, colour, gender) dis- crete numerical variables (eg number of students, shoe size) and contin- uous numerical variables (eg height, weight)
	2	Recognising and explaining the difference between a 'population' and a 'sample' selected from a population when collecting data	• recognise and explain the differ- ence between a 'population' and a 'sample' selected from a population when collecting data
	3	Investigating and determine the differences between collecting data by observation, census and sampling	• identify examples of variables for which data could be collected by ob- servation, eg direction travelled by vehicles arriving at an intersection, native animals in a local area
			• identify examples of variables for which data could be collected by a census or by a sample, eg a census to collect data about the income of Aus- tralians, a sample for TV ratings
		Data sampling and populations	
The relationship be- tween a sample & the population	1	Using samples to make predic- tions about a larger 'population' from which the sample comes	• use samples to make predictions about a larger 'population' from which the sample comes
	2	Inferring properties of popula- tions or distributions from a sam- ple, whilst knowing the limitations of sampling	• infer properties of populations or distributions from a sample, whilst knowing the limitations of sampling
		Clusters, gaps and outliers in dat	ta
Clusters, gaps and out- liers in data	1	Identifying any clusters, gaps and outliers in sets of data	 identify any clusters, gaps and out- liers in sets of data
			• identify any clusters, gaps and out- liers in sets of data when represented in different displays
	2	Investigating the effect of out- liers on the mean, median, mode and range by considering a small set of data and calculating each measure, with and without the in- clusion of an outlier	• investigate the effect of outliers on the mean, median, mode and range by considering a small set of data and calculating each measure, with and without the inclusion of an out- lier

10 Chance and Probability

		Chance and Probability	
		Complementary events	
Learning Journey	Steps	Spine Nodes	Subnodes
Complementary events	1	Understanding the term 'comple- ment' to describe events that are mutually exclusive and add to 1	• understand the term 'complement' to describe events that are mutually exclusive and add to 1
	2	Finding the complement of an event	• find the probability of the comple- ment of an event by using the fact that the sum of the probabilities of an event and its complement is 1
	3	Identifying the complementary event for a given event, and calculating the theoretical prob- ability that a given event will not occur	• identify the complementary event for given event, and calculate the theoretical probability that a given event will not occur
		occui	 describe in words the complement of an event
		Probability language to describe ev	ents
Probability language to describe events	1	Describing events using language of 'at least', exclusive 'or' (A or B but not both), inclusive 'or' (A or B or both) and 'and' (both A and B)	• describe events using language of 'at least', exclusive 'or' (A or B but not both), inclusive 'or' (A or B or both) and 'and' (both A and B)
			 recognise the difference between mutually exclusive and non-mutually exclusive events
	2	Describing compound events us- ing the terms 'at least', 'at most', 'not' and 'and'	• describe compound events using the terms 'at least', 'at most', 'not' and 'and'
	3	Posing problems that involve the use of the terms 'at least', 'at most', 'not', 'and' and solving problems posed by others	• solve problems posed by others that involve the use of the terms 'at least', 'at most', 'not', 'and'
	4	Classifying compound events	• classify compound events using in- clusive 'or' and exclusive 'or'
		Venn diagrams and Two-Way tab	les
Understanding and con- structing Venn diagrams	1	Interpreting Venn diagrams in- volving 2 or 3 mutually exclusive attributes	 interpret Venn diagrams involving 2 or 3 mutually exclusive attributes describe regions in Venn diagrams representing mutually exclusive at- tributes
	2	Interpreting Venn diagrams in- volving 2 or 3 non- mutually ex- clusive attributes	• interpret Venn diagrams involving 2 or 3 non- mutually exclusive at- tributes
			• describe individual regions or com- binations of regions in Venn dia- grams representing non-mutually ex- clusive attributes, using the language 'and', exclusive 'or', inclusive 'or', 'nei- ther' and 'not'
	3	Representing events in Venn dia- grams	• represent events of 2 or 3 attributes using Venn diagrams

Learning Journey	Step	Spine Nodes	Subnodes
		Constructing Venn diagrams to represent all possible combina- tions of 2 attributes from given or collected data	• construct Venn diagrams to rep- resent all possible combinations of 2 attributes from given or collected data
Using Venn diagrams to solve problems	1	Using data presented in Venn di- agrams to answer problems, in- cluding probability questions	• use data presented in Venn dia- grams to answer problems, including probability questions
	2	Using given data to calculate missing values in a Venn diagram	• use given data to calculate missing values in a Venn diagram
	3	Using data presented in Venn diagrams to answer problems where missing values must first be found, including probability questions	• use data presented in Venn di- agrams to answer problems where missing values must first be found, including probability questions
Interpreting and con- structing two-way tables	1	Interpreting given two-way ta- bles representing non-mutually exclusive attributes	• interpret given two-way tables rep- resenting non-mutually exclusive at- tributes
			• describe relationships displayed in two-way tables using the language 'and', exclusive 'or', inclusive 'or', 'nei- ther' and 'not'
	2	Constructing two-way tables to represent the relationships be- tween attributes	• construct two-way tables to rep- resent the relationships between at- tributes
	3	Using data presented in two-way tables to answer problems, in- cluding probability questions	• use data presented in a two-way table to answer problems, including probability questions
	4	Using given data to calculate missing values in a two-way ta- ble	• use given data to calculate missing values in a two-way table
	5	Using data presented in two- way tables to answer problems where missing values must first be found, including probability questions	• use data presented in two-way ta- bles to answer problems where miss- ing values must first be found, includ- ing probability questions
Two-way tables and Venn diagrams	1	Converting between representa- tions of the relationships between 2 attributes in Venn diagrams and two-way tables	• convert between representations of the relationships between 2 at- tributes in Venn diagrams and two- way tables

For more information about Mathletics, contact our friendly team.

www.mathletics.com/contact

