Mathletics White Rose Maths (WRM) Summer Scheme of Learning, 2018 Alignment with Mathletics

Year 5 – Yearly Overview

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
Autumn	Number – Place Value			Number – and Sub	Addition traction	ition Statistics		Number – Multiplication and Division		Perimeter and Area		Consolidation
Spring	Number – Multiplication and Division				Number – Fractions			Number – Decimals & Percentages		Consolidation		
Summer	Number – Decimals			s	Geometry- Properties of Shapes			Geometry- Position and Direction	Measur Converti	ement- ng Units	Measures Volume	Consolidation

This alignment document has been based on the White Rose Maths (WRM) scheme of learning available on the TES website.

Summer Scheme of Learning, 2018

Alignment with Mathletics

Contents

Examples of alignment to Mathletics

Block 1 (Weeks 1–4) Number: Decimals	01
Block 2 (Weeks 5–7) Geometry: Properties of Shape	06
Block 3 (Week 8) Geometry: Position & Direction	11
Block 4 (Weeks 9–10) Measurement: Converting Units	13
Block 5 (Week 11) Measurement: Volume	18

Purpose:

The aim of this document is to support Mathletics teachers, who use the WRM scheme of learning, to make full use of the resources available within Mathletics. Whenever possible, activities, pages from the eBooks or learning experiences on Rainforest Maths have been matched to each of the small steps on the WRM scheme of learning.

In Mathletics, many eBooks are available in the student interface, however all eBooks are available to teachers through the teacher console. These topic-based eBooks contain practice and fluency exercises, along with application questions and games. Only a small selection of the relevant pages has been added to the document.

Links to Rainforest Maths, which can be found in the 'Play' area in the Mathletics student interface, have also been included as this resource has great visuals which work well on interactive whiteboards and gives pupils further opportunities to practice their learning online.

Course selection:

A specific Mathletics course has been created in alignment with the WRM Summer scheme of learning. You may wish to set this course for your class/groups.

England Yr 05 WRM Aligned

Data-Driven Teaching and Learning

Differentiation

Feedback and Reflection

Student Growth

Blended Learning

Summer Scheme of Learning, 2018

Alignment with Mathletics

Examples of alignment to Mathletics Block 1 (Weeks 1–4) Number: Decimals

National Curriculum Objectives	WRM Small Steps
 Solve problems involving number up to three decimal places. Multiply and divide whole numbers and those involving decimals by 10, 100 and 1000. Use all four operations to solve problems involving measure [for example, length, mass, volume, money] using decimal notation, including applied 	 Adding Decimals within 1 Subtracting Decimals within 1 Complements to 1 Adding - Crossing the Whole Adding - Same Decimal Places Subtract - Same Decimal Places Adding - Different D.P Subtracting - Different D.P Wholes and Decimals
including scaling.	 Decimal Sequences Multiply by 10, 100 and 1,000 Divide by 10, 100 and 1.000

Small step: Complements to 1

Topic: Decimals

Activity: *Decimal Complements*

In this activity pupils find pairs of decimals that add to 1 whole. The easier level begins with tenths before moving to hundredths. The support area uses a number line to show pupils the strategy of jumping to the next tenth and then adding tenths to make 1 whole.

Mathletics

Small step: Adding – Crossing the Whole

eBook, F series: Fractions, Decimals and Percentages, page 37

Pupils are shown how to set out a calculation when adding decimals. They complete exercises to practise additions of decimals, including those where the tenths add up to more than 1.

Rainforest Maths – Level D – Decimals –adding decimals

Pupils are shown a completed example of a calculation where decimals are added. Using the prompts to help, they complete examples and check to see if their answers are correct.

Summer Scheme of Learning, 2018

Alignment with Mathletics

Summer Scheme of Learning, 2018

Alignment with Mathletics

Small step: Subtracting – Different D.P

Topic: Decimals Activity: Subtract Decimals 2

Pupils use the written method to subtract 2 decimals, including decimals with a different number of decimal places. The support area reinforces the need to line up the decimal points.

Summer Scheme of Learning, 2018

Alignment with Mathletics

Summer Scheme of Learning, 2018

Alignment with Mathletics

Summer Scheme of Learning, 2018

Alignment with Mathletics

Examples of alignment to Mathletics Block 2 (Weeks 5–7) Geometry: Properties of Shape

National Curriculum Objectives	WRM Small Steps
Identify 3D shapes, including cubes and other cuboids, from 2D representations.	
Use the properties of rectangles to deduce related facts and find missing lengths and angles.	 Measuring Angles in Degrees Measuring with a Protractor (1)
Distinguish between regular and irregular polygons based on reasoning about equal sides and angles.	 Measuring with a Protractor (1) Measuring with a Protractor (2) Drawing Accurately
Know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles.	 Angles on a Straight Line Angles Around a Point
 Draw given angles, and measure them in degrees (°). 	 Lengths and Angles in Shapes Regular and Irregular Polygons
ldentify: angles at a point and one whole turn (total 360°), angles at a point on a straight line and $\frac{1}{2}$ a turn (total 180°) other multiples of 90°.	Reasoning about 3D Shapes

Small step: Measuring Angles in Degrees **Topic: Properties of Shapes** Activity: What Type of Angle? In this activity pupils identify if an angle is acute, a right angle or obtuse. The support area provides a reminder of the sizes of those 3 angle types. Acute Anale **Topic: Properties of Shapes** Activity: Classifying Angles Pupils classify a given angle as right, obtuse, straight, reflex or a revolution. The support area provides a reminder of the sizes of those 6 angle types. The best estimate for the angle is: **Topic: Properties of Shapes** Activity: Estimating Angles Pupils use their knowledge of different angle types to 145 estimate the size a given angle. 270°

Summer Scheme of Learning, 2018

Alignment with Mathletics

Summer Scheme of Learning, 2018

Alignment with Mathletics

Mathletics

Rainforest Maths – Level F – 2D Shapes –angles

Clicking on 'more' at the bottom left-hand corner opens this screen, where pupils can drag the protractor onto the angle and carefully measure the shown angle. Instant feedback enables pupils to try again if their answer is incorrect.

Small step: Drawing Accurately

Lines and angles – measuring angles

Use a protractor to complete these angles. One line is drawn for you. You need to measure and draw the other line. Draw it about the same length as the other line. Mark the angles with the measurements. a b c

eBook, F series: Geometry, page 5

Pupils are shown a set of lines. They are then invited to use protractors and rulers to carefully draw given angles.

Small step: Angles on a Straight Line

2D shapes ... angles. We can use the total number of degrees and the size of two angles to calculate the size of a missing angle. circle What is the size of the missing angle. circle Suplementary engle. circle Suplementary engle.

Rainforest Maths – Level G – 2D Shapes – angles

Clicking 'more' at the bottom right-hand corner enables pupils to move through a series of exercises exploring angles. After calculating the missing angle in a shape, selecting 'next' opens exercises where pupils calculate angles on a straight line.

Small step: Angles Around a Point

Pupils calculate the value of one of the angles forming a revolution. The support area reminds pupils that the angles forming a revolution add to 360°.

eBook, E series: Geometry, page 6

Pupils use their knowledge of the size of an angle of revolution to calculate the degrees between each 5 minutes on an analogue clock. They are then asked to identify the angle sizes of various times shown.

Summer Scheme of Learning, 2018

Alignment with Mathletics

Rainforest Maths – Level G – 2D Shapes – angles

Clicking on 'more' at the bottom right-hand corner move pupils on from calculating a missing angle on a straight line, to calculating the missing angle around a point. Pupils enter their answers and receive immediate feedback.

Small step: Lengths and Angles in Shapes

gon is a 2D (flat) shape with 3 or more straight sides. The word comes from the Gree of gonia, meaning many angles.

2D shapes - polygons

NVR

Rainforest Maths - Level G - 2D Shapes - angles

Pupils are shown examples of 2D shapes, with a description of the rules that their angles follow. A related example then challenges pupils to apply this information in calculating a missing angle.

Small step: Regular and Irregular Polygons

+

eBook, F series: Geometry, page 7

The term 'polygon' is explained and examples of both regular and irregular polygons are shown. Pupils secure their understanding with exercises where they need to determine if the shapes illustrated are polygons and if they are regular or irregular polygons.

Mathletics Dictionary – Concept Search – polygon

Concept Search provides an excellent slide show for use on the interactive whiteboard, or for pupils to work through independently. A full range of regular polygons are illustrated and their features are described.

Rainforest Maths – Level G – 2D Shapes – polygons

This table provides pupils with an excellent reference tool, illustrating and describing a full range of 2D shapes. Clicking on the black shapes opens up a more detailed description and illustration.

Summer Scheme of Learning, 2018

Alignment with Mathletics

Small step: Reasoning about 30 s	Small step. Reasoning about 3D shapes						
Select a property. The point where two or more edges meet.	Topic: Properties of Shapes Activity: Faces, Edges and Vertices 1 Pupils are asked to identify the property represented on a 3D shape including faces, edges, vertices and bases.						
A face is a flat surface. 6 faces rectangular prism Select: Back @	Topic: Properties of Shapes Activity: <i>How Many Faces?</i> Activity: <i>How Many Edges?</i> Activity: <i>How Many Vertices?</i> In these activities pupils are shown a 3D shape and are asked to identify the number of faces, edges or vertices.						
3D shapes - introduction 2D shapes have 2 dimensions - width and height. They'r flat: 3D shapes have 2 dimensions - width and height. They'r flat: 3D shapes have 2 dimensions - width, width and deut ben, we shall be flats. 3D shapes can have 3 dimensions - width, width and deut ben, we shall be flats. 3D shapes can have 3 dimensions - width, width and be flat be flats. 3D shapes can have 3 dimensions - width, width and setting - shapes - width and the flats. 3D shapes can have 3 dimensions - width, width and setting - shapes - width and the flats. 3D shapes can have 3 dimensions - width and be been shapes from beis idea? If it helps, find the solids in your disarrows a the flat medication - b have needed: a the flat medication - b have needed: a the part of the shapes - b have and the shapes from being idea? If it helps, find the solids in your disarrows a the part of the shapes - b have and the shapes - b have a shapes - b have and the shapes - b have and the shapes - b have a shapes -	eBook, F series: Geometry, pages 18–23 Following on from a concise explanation of 3D shapes, pupils explore a range of 3D shapes and identify and label their properties. On pages 22–23 pupils explore the cross sections of 3D shapes. They are then encouraged to visualise what a cross section would look like and match it to given shapes.						
3D Objects Since Tectangular prism a 3D shape with 6 rectangular faces, opposite faces are always the same size	Mathletics Dictionary — Concept Search — polygon Concept Search provides a slide show which clearly illustrates 3D shapes and describes their properties.						
3D shapes nets. What shape is my net? Click the right shape.	Rainforest Maths – Level G – 3D Shapes The 3D shapes topic in Level G of Rainforest Maths includes several tasks that involve reasoning about the relationship between 2D shapes and 3D shapes. Pupils are asked to identify nets, identify the corresponding shape for a given view of a 3D shape and identify the shape of cross- sections.						

Summer Scheme of Learning, 2018

Alignment with Mathletics

Examples of alignment to Mathletics Block 3 (Week 8) Geometry: Position & Direction

National Curriculum Objectives	WRM Small Steps
Identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed.	 Position in the 1st Quadrant Reflection Reflection with Co-ordinates Translation Translation with Co-ordinates

Small step: Position in the 1st Quadrant **Topic: Position and Direction** Activity: Coordinate Graphs: 1st Quadrant Pupils record the coordinates for a given point on a coordinate graph. The support area reminds pupils that the x coordinate is recorded first. Back 📢 Position – coordinates eBook, F series: Geometry, pages 30-36 Pages 30–34 explore coordinates where 2 lines intersect. Pupils mark points using the given coordinates, as well as record coordinates of given points. They then move on to using a series of coordinates to map points and join them to create shapes. Pages 35–36 explore coordinates on maps. Pupils are challenged to read the maps and identify the coordinates a (4, 1) of specific features. b (6, 6) Position coordinates 0 Rainforest Maths – Level F – Position – coordinates This page provides a useful map featuring coordinates. It is particularly useful to be shown on a screen for the class to explore, finding the location of different features using coordinates. Individual students can answer the questions on the page, entering the coordinates of features.

Summer Scheme of Learning, 2018

Alignment with Mathletics

What transformation is shown?

The two dark dats shown could be part of one or two edges or could be vertice of the shape you see offer you reflect a triangle using a mirror. If you reflect a triangle using a mirror, the two dark dats shown could either be vertices, or pa of one or two edges of the reflected shape. Draw the original triangle, the reflection line, and the reflected shape that the dots are part of of.

Small step: Reflection Small step: Translation

Two Points

Try different possibilities

Topic: Position and Direction Activity: *Transformations*

Pupils identify the type of transformation that a shape has undergone. The support area provides definitions for reflections, translations and rotations.

Mathletics

eBook, F series: Rich Learning Task, page 16

In this open-ended Rich Learning Task, pupils use the 2 given points as either points on edges of a triangle or vertices. They draw their original triangle and then draw the reflected triangle, marking the 2 reflected points. Pupils are encouraged to show different possibilities, practising reflecting a shape and recognising where points would be after the reflection.

eBook, F series: Geometry, pages 25–26

Page 25 illustrates and explains how shapes look when different transformations are applied. Pupils explore reflections, translations and rotations. They consolidate their understanding by drawing transformations of a shape. Finally, they identify which movement has occurred when shown shapes in different positions.

Rainforest Maths – Level F – 2D shapes – transformation

This page explains what happens when an object or shape is reflected, translated, rotated or enlarged. Pupils identify which transformation has occurred when they compare 2 illustrations.

Summer Scheme of Learning, 2018

Alignment with Mathletics

Examples of alignment to Mathletics Block 4 (Weeks 9–10) Measurement: Converting Units

National Curriculum Objectives	WRM Small Steps
 Convert between different units of metric measure [for example, km and m; cm and m; cm and mm; g and kg; I and ml]. Understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints. Solve problems involving converting between units of time 	 Kilograms and Kilometres Milligrams and Millilitres Metric Units Imperial Units Converting Units of Time Timetables

Small step: Kilograms and Kilometres Convert from grams (g) to kilograms (kg). 4,000 grams = kilograms **Topic: Converting Units** Activity: Grams and Kilograms Conversion Pupils convert between grams and kilograms. This activity 1,000 g = 1 kg involves whole number conversions only. One kilogram contains 1,000 grams. Convert from km to m. **Topic: Converting Units** 8.4 km = 8,400 m Activity: Metres and Kilometres 8.4 × 1.000 Pupils convert between kilometres and metres and vice versa. Questions begin with whole numbers only before 1 km = 1,000 m moving onto conversions with decimals. Convert to the unit indicated. 1 Mass – kilograms eBook, F series: Volume, Capacity and Mass, pages 9–10 Pupils secure their understanding of the relationship between kilograms and grams through a series of exercises on page 9. kg Mass = kg Mass = Page 10 uses the context of airline luggage allowance, with pupils working out the excess baggage and the excess luggage fee.

Summer Scheme of Learning, 2018

Alignment with Mathletics

Summer Scheme of Learning, 2018

Alignment with Mathletics

Summer Scheme of Learning, 2018

Alignment with Mathletics

Most measurem and thousands. such as ounces, measurements	nents used t However, y pounds, sto relate to me	oday in the UK are me ou will still sometimes one and pints. Therefor etric measurements.	tric cor re, i	– that is, they ne across old t's useful to k	are based on tens, h imperial' measureme now how these imper	undreds nts, ial
				a	pproximately	
	Mass	1 ounce	=	28.35 g	30 g	
		1 pound (16 ounces)	=	0.45 kg	0.5 kg	
		1 stone (14 pounds)	=	6.35 kg	6.5 kg	
	Capacity	1 pint	-	0.571	0.61	
Using the app	roximate eq	uivalents, convert these	im	perial measure	s to metric:	
a 2 pounds :	-	kg		b 4 stones	= kg	
c 3 plate				d Courses	-	
Jnits of len	gth – m	metric and imp	er	ial equiv	alents	
Units of len Most measuren and thousands. as stone, pound in miles rather t	gth – m nents used : However, y Is, pints, yan	today in the UK are me ou will still sometimes ds, feet and inches, ar tres. Therefore, it's us	er co id a	ial equive - that is, the me across old II road signs s to know how	alents y are based on tens, h "imperial" measurem til measure longer di these imperial measu	undrede ents, suc stances urement
Most measurem and thousands. as stone, pound in miles rather t relate to metric	gth — m nents used : However, y Is, pints, yar than kilome measurem	netric and imp today in the UK are me ou will still sometimes drs, feet and inches, ar tres. Therefore, it's use ents.	er co id a eful	ial equive that is, the me across old II road signs s to know how	alents y are based on tens, h "imperial" measurem till measure longer die these imperial measu	undreds ents, suc stances urement
Units of len Most measuren and thousands. as stone, pound in miles rather t relate to metric	gth — m nents used 1 However, y Is, pints, yai than kilome measurem	netric and imp today in the UK are me ou will still sometimes dris, feet and inches, ar tres. Therefore, it's usu ents. 1 inch	er trii co id a eful	ial equive - that is, the me across old ill road signs s to know how 2.54 cm	alents y are based on tens, h 'imperial' measurem til measure longer di these imperial measu pproximately 2.5 cm	undreds ents, suc stances urement
Units of len Most measuren and thousands. as stone, pound in miles rather t relate to metric	gth — m nents used i However, y Is, pints, yar than kilome measurem Length	today in the UK are me ou will still sometimes rds, feet and inches, ar tres. Therefore, it's use ents. 1 inch 1 foot (12 inches)	er trii co eful = =	ial equive - that is, the me across old ill road signs s to know how 2.54 cm 30.48 cm	alents y are based on tens, h "imperial" measure ill measure longer di these imperial measu pproximately 2.5 cm 30 cm	undrede ents, suc stances urement
Units of len Most measuren and thousands. as stone, pound in miles rather t relate to metric	gth — m nents used i However, y Is, pints, yar han kilome measurem Length	today in the UK are me ou will still sometimes ds, feet and inches, ar tres. Therefore, it's use ents. 1 inch 1 foot (12 inches) 1 yord (3 feet)	er etrii co d a eful = = =	ial equive - that is, the me across old Il road signs s to know how 2.54 cm 30.48 cm 91.44 cm	alents y are based on tens, h "imperial" measurem till measure longer di these imperial measu pproximately 2.5 cm 30 cm 90 cm	undreds ents, suc stances urement
Units of len Most measuren and thousands. as stone, pound in miles rather t relate to metric	gth — m nents used i However, y Is, pints, yait han kilome measurem Length	netric and imp today in the UK are mr ou will still sometimes dis, feet and inches, ar dis, feet and inches, ar there. Therefore, it's us ents. 1 inch 1 foot (12 inches) 1 yard 3 feet) 1 mile (1.760 yards)	er co id a eful = = =	c - that is, the me across old ill road signs s to know how 2.54 cm 91.44 cm 1.61 km	alents vare based on tens, h imperial measurem ill measure longer di these imperial meas pproximately 2.5 cm 30 cm 90 cm 1.6 km	undrede ents, suc stances urement
Units of len Most measuren and thousands. as stone, pound in miles rather t relate to metric	gth – m nents used i However, y Is, pints, yai chan kilome measurem Length	today in the UK are mr ou will still sometimes of, feet and inches, ar tres. Therefore, it's us ents. 1 inch 1 foot (12 inches) 1 yard (3 feet) 1 mile (1.760 yards)	er co id a eful = = =	c - that is, the me across old ill road signs s to know how 2.54 cm 30.48 cm 91.44 cm 1.61 km	alents Imperial measurem all measure longer di these imperial measure pproximately 2.5 cm 30 cm 90 cm 1.6 km	undreds ents, suc stances urement:
Units of len Most measurem and thousands. as stone, pound in miles rather relate to metric	gth – m nents used i However, y Is, pints, yar than kilome measurem Length Mass	today in the UK are me ou will still sometimes of feet and inches, ar tres. Therefore, it's us ents. 1 inch 1 foot (12 inches) 1 yard (3 feet) 1 mile (1,760 yards) 1 ounce	er co id a eful = = =	c - that is, the me across old ill road signs s to know how 2.54 cm 30.48 cm 91.44 cm 1.61 km 28.35 g	alents are based on tens, f imperial measure immesure longer di these imperial measu pproximately 2.5 cm 30 cm 90 cm 1.6 km 30 g	undreds ents, suc stances urement:
Units of len Most measuren and thousands. as stone, pound in miles rather t relate to metric	gth – m nents used i However, y However, y s, pints, yaa neasurem Length Mass	netric and imp today in the UK are mo dy, feet and inchers, ar tres. Therefore, it's us inch 1 foot (12 inches) 1 yard (3 feet) 1 mile (1.20 with 1 mile (1.00 with 1 ounce 1 pound (16 ounces)	er co da eful = = = =	c - that is, the me across old il road signs - s to know how 2.54 cm 30.48 cm 91.44 cm 1.61 km 28.35 g 0.45 kg	alents are based on tens, h imperial' measuremulti imeasure longer di these imperial measu- pproximately 2.5 cm 30 cm 90 cm 1.6 km 30 g 0.5 kg	undreds ents, suc stances urement:
Units of len Most measuren and thousands, as stone, pound in miles rather relate to metric	gth – m nents used i However, y is, pints, yar measurem Length Mass	today in the UK are me uswill still sometimes dy, feet and inches, ar tres. Therefore, it's uswith 1 foot (12 inches) 1 yard (3 feet) 1 mile (1.760 yards) 1 ounce 1 pound (16 ounces) 1 stone (14 pounds)	er trii co d a eful = = = = =	c - that is, the me across old ill road signs s to know how 2.54 cm 91.44 cm 1.61 km 28.35 g 0.45 kg 6.35 kg	alents vare based on tens, h imperial measure longer di threse imperial measu pproximately 2.5 cm 30 cm 90 cm 1.6 km 30 g 0.5 kg 6.5 kg	undreds ents, suc stances urement
Units of len Most measuren and thousands, as stone, pound in miles rather t relate to metric	gth — m hents used I However, y than kilome measurem Length Mass	today in the UK are mr volls still sometimes disk get and inches, ar tres. Therefore, it's us 1 foot (12 inches) 1 yard (3 feet) 1 mile (1,760 yards) 1 ounce 1 pound (16 ounces) 1 stone (14 pounds)	er co id a eful = = = = =		alents vare based on tens, f "imperial measurem till measure longer dis these imperial measure porstimately 2.5 cm 30 cm 90 cm 1.6 km 30 g 0.5 kg 6.5 kg	undreds ents, suc stances rement

eBook, F series: Volume, Capacity and Mass, page 13

This page explains the relationship between metric and imperial units of measurement for mass and capacity. Exercises provide pupils with examples to practise converting between metric and imperial measurements, including ounces to grams, pounds to kilograms and stones to kilograms.

Mathletics

eBook, F series: Length, Perimeter and Area, page 7

This page provides a table of conversions between metric and imperial units of measurement for length, mass and capacity. Exercises give pupils the opportunity to apply these facts to convert between metric and imperial units and match equivalent measurements.

Small step: Converting Units of Time

Topic: Converting Units

Activity: Time Conversions with Simple Fractions

Pupils are encouraged to convert between seconds and minutes or minutes and hours by generating and recognising multiples of 60 and recalling simple fractions (1/4, 1/2, 3/4) of an hour or minute.

eBook, F series: Time, page 1

This page provides pupils with a comprehensive table showing the relationships between units of time. Pupils use this information to complete exercises which involve converting between different units of time and considering the most appropriate units to use in a range of circumstances.

Rainforest Maths – Level F– Time – Time Facts

This page provides a detailed table to support pupils in converting between different units of time. Pupils complete conversion questions using the information shown.

Summer Scheme of Learning, 2018

Alignment with Mathletics

Small step: Timetables

Summer Scheme of Learning, 2018

Alignment with Mathletics

Examples of alignment to Mathletics Block 5 (Week 11) Measurement: Volume

National Curriculum Objectives	WRM Small Steps
 Estimate volume [for example using lcm³ blocks to build cuboids (including cubes)] and capacity [for example, using water]. Use all four operations to solve problems involving measure. 	 What is Volume? Compare Volume Estimate Volume Estimate Capacity

Small	step:	What is	Volume?
ornan	. Stop.	WINGE 15	volutio.

Summer Scheme of Learning, 2018

Alignment with Mathletics

Rainforest Maths — Level F — Volume — cubic centimetres

Pupils are shown a series of block prisms and record the length, breadth and height of the prism. They calculate the volume and can see the relationship between the volume and number of centimetre cubes they can count.

Small step: Compare Volume

Small step: Estimate Capacity

eBook, F series: Volume, Capacity and Mass, page 6

In this practical activity, pupils create 3 lidless containers using squared paper, cut into 12 cm squares.

Pupils calculate the volume of each box and compare them.

The task is extended with a challenge to create further boxes and to explore patterns and make predictions.

Rainforest Maths – Level F – Capacity – millilitres

This activity supports pupils in understanding the link between capacity and volume.

The activity can be used to support pupils in making estimations of the capacity of containers.

Mathletics

Summer Scheme of Learning, 2018

Alignment with Mathletics

Live Mathletics			
	What's in level 4?		
	Addition from 1 - 100	Subtraction from 1 - 100	
	35 + 30 + 10 = ?	30 - 6 = ?	
	Times tables to 10 × 10	Doubles and halves up to 100	
	8 × 6 = ?	Half of 96 = ?	
	2s, 3s, 4s, 5s and 10s division facts	Addition from 1 - 50 with a missing addend	
	30 + 3 = ?	25 + ? = 50	
	Times tables to 10 × 10 with a missing factor		
	7 × ? = 49		

Live Mathletics engages pupils in 60-second real-time games, testing speed and accuracy of maths facts.

To support progress in Year 5, encourage pupils to use Level 4 and 5 of Live Mathletics.

Teachers can set minimum levels on Live Mathletics by clicking the 'switch to old Mathletics' button, selecting **Results** and selecting **Minimum levels** on the left-hand side of the page. Students can still access higher levels once you set a minimum level, so encourage students to challenge themselves and move on to the next level when they are ready.

(Note: Live Mathletics levels are a sliding scale, with no relationship to classes or old National Curriculum levels. As a resource which is also used in secondary schools, the levels from 6 upwards are intended for older students.)

When assigning activities with calculations that do not have spaces for recording any working out, consider getting pupils to record their thinking strategies in their Maths books or on a whiteboard, before answering the question in Mathletics. Pupils can then self-mark their work after each question. If they have made a mistake, they can correct their work using the support feature in the activities. Instant feedback and learning!

For more information about Mathletics, contact our friendly team.

www.mathletics.com/contact

